

テーマ2 機能継続・早期復旧 を可能とする大地震対策建築モ デルの開発

工学院大学建築学部

山下哲郎(L)、田村雅紀(SL)、西川豊宏、久田嘉章

背景と目的 簡単に

背景:機能維持+早期復旧が必要

- ・大地震後の建物の機能維持 +早期復旧が必要な時代に
- ・オフィスビル・・・地震後 数日間はビル内に滞留可能 にし、業務は早期に再開
- 体育館・・・避難所・防災 拠点として活用

帰宅困難者受入状況(2011/3/11)

要求性能レベルの向上

想定地震動		新耐震設計法 (1981)	東京都構造設計指針 (2016)		
LI(稀な地震動)	50年	機能維持	無損傷		
L2(極稀な地震動)	500年	人命保護	軽微な補修で事	業継続可	
L3(?)	1500年	-	人命保護		
対象		構造骨組のみ	非構造材も考慮		

地震後3日間はビル内に留まれる 事業再開に要する時間、費用軽減

テーマ2の目的

・膨大な人数が勤務する大都市の高層オフィスビルと、

. 建築の耐震化、強靭化にかかわる 専門家に対する提言

大地震後の機能継続・早期復旧を目的とした建築モデルを、 構造・非構造・設備の3つの側面から検討、開発する

テーマ2の体制

地震動の想定 久田 都市部の高層ビルの被害低減・リスク評価

構造体 : 山下、久田

建築設備 : 西川 外装材 : 田村

天井、吊設備 : 山下、西川 確率論的評価 : 久田、山下

体育館の被害低減 山下

テーマー

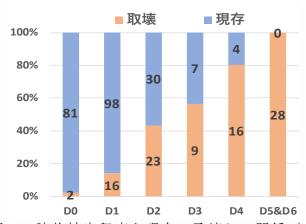
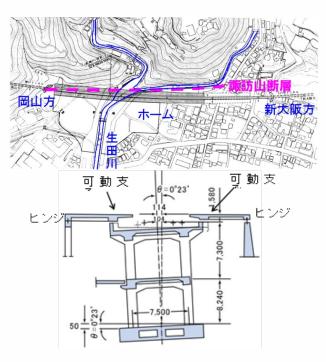
2019年度 研究概要

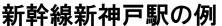
耐震関係

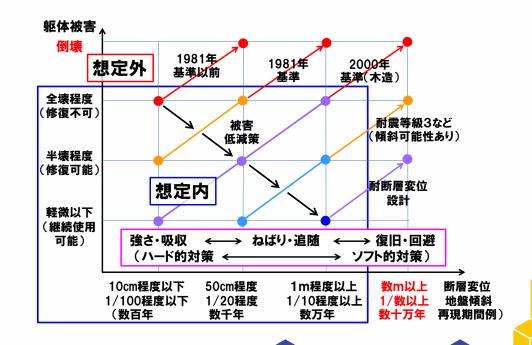
2-1 地表地震断層の断層変位による建物被害 の事例【地震動p.27】

- ・断層変位による建物被害調査(台湾、長野、福島、熊本)
- ・断層変位は予測困難 対策はある程度可能
- 特に都市部では→対策しておいて修復が望ましい

熊本地震横ずれ断層上木造住宅 べた基礎で 現存

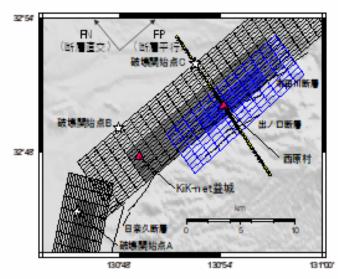



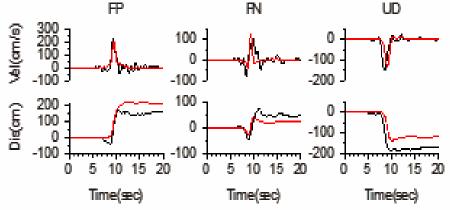

図 29 建物被害程度と現存・取壊しの関係 (D0:無被害、D1:軽微、D2:一部損壊、D3:半壊、 D4:全壊、D5:一部倒壊、D6:完全倒壊の 6 段階で分類 ¹



2-2地表地震断層の断層変位と建物の耐震対策 【地震動p.37】

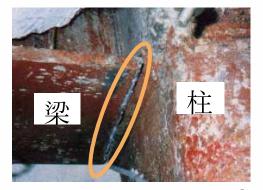
- ・活断層直上の建物の断層変位対策を調査、レビュー
- ・断層変位対策は可能。地盤から構造まで様々な方法あり



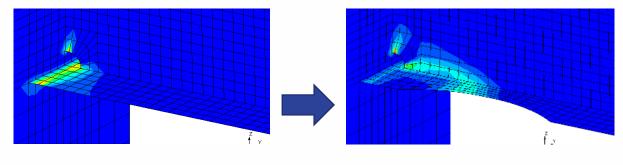


2-3地表地震断層近傍の強震動評価と建物 被害【地震動p.47】

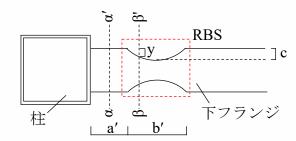
2016年熊本地震の断層モデル と強震観測点(西原村)

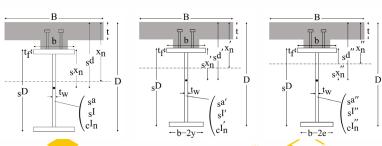

西原村の観測記録(黒線)とシミュレーション波形(赤線)上:速度波形、下:変位波形

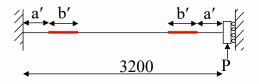
• 2016熊本地震における、KiK-net益城周 辺と益城町下陳地区周辺の建物被害程度 の差の原因を解析により分析。表層地盤 と断層との位置関係が原因。


2-4,2-5 骨組の溶接部破断防止対策

【超高層 p.53,55】



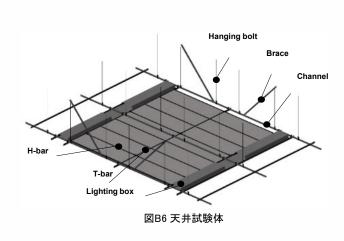

Northridge(1994)、兵庫県 南部(1995)地震の被害

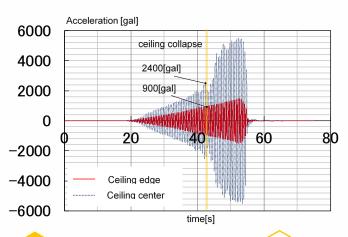


梁端部ドッグボーン(RBS)による溶接部ひずみ低減効果

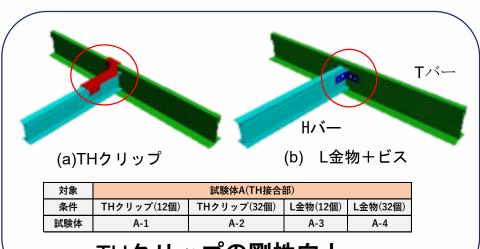
非線形有限要素解析による効果の検証

ドッグボーン補強を設けた梁の剛性評価式 の理論的誘導

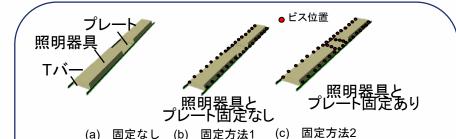

新宿校舎全体の解析モデルに反映


2-6 システムライン天井の耐震性向上 (🕵)

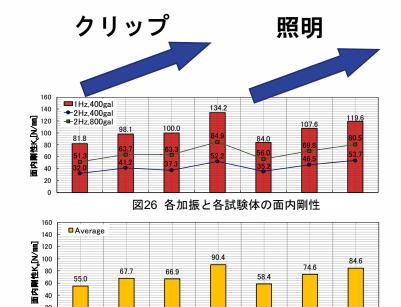
【超高層 p.57】



- ・天井の面内剛性を上げ、変形を抑える
- →THクリップの数の増加と剛性向上
- →照明器具(蛍光灯ボックス)の剛性を 上げ、梁に用いる
 - 解析モデルの構築は不可能?


2-6 システムライン天井の耐震性向上 (🚎)

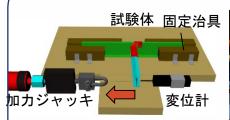
【超高層 p.57】



THクリップの剛性向上

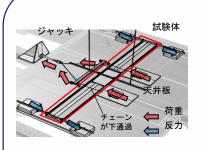
対象	試験体B(照明器具)			
条件	固定なし	固定方法1	固定方法2	
試験体	B-1	B-2	B-3	

照明器具の剛性向上

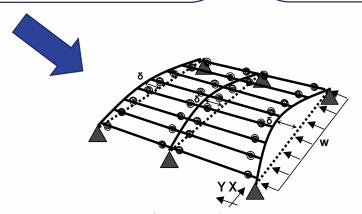

振動実験より得た天井の面内剛性

A-2 A-3 A-4 B-1 B-2 図27 各加振の面内剛性平均値の比較

58.4

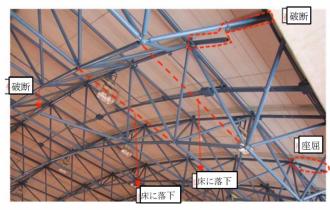


2-6 システムライン天井の耐震性向上 【超高層 p.57】

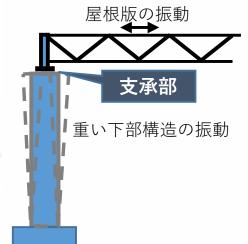


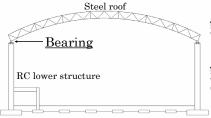
THクリップの要素実験

照明器具の要素実験


要素実験から解析モデル構築を試みたが剛性は大幅に異なる →天井板とHバーの摩擦が大きく影響(再現性低い)

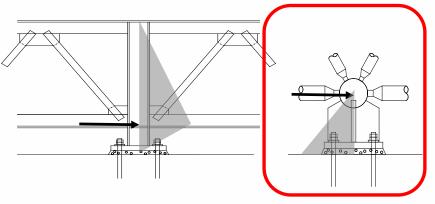
2-7 置屋根体育館支承部の復元力特性 【体育館_{P.63}】


都市部では避難所となる公共施設が少ない →体育館の被害防止が重要 大型の体育館(高校、自治体)の多くは置屋根構造

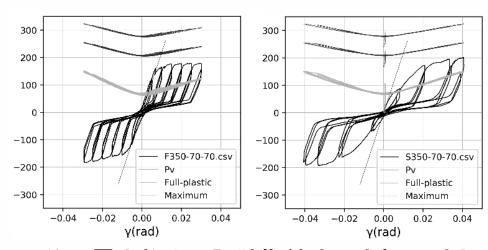


支承部の被害(2011)

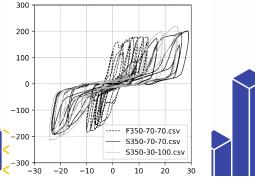
屋根トラス架構の被害(2016)



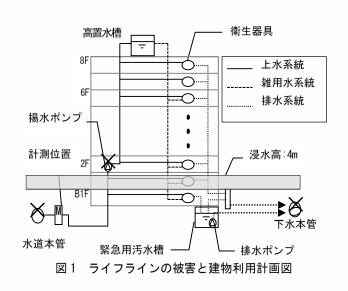
鉄骨屋根

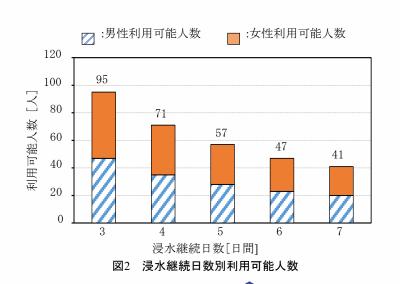

鉄筋コンクリート 下部構造 図 C3 屋根と下部構造の相互作用

2-7 置屋根体育館支承部の復元力特性 【体育館_{P.63}】


2019年度:システムトラス型屋根支承部の実験(熊本地震被害)

既往の露出柱脚の設計指針式は大幅に耐力 を過大評価


水平力による変形が大きい→屋 根を守る効果?→解析で確認



2-8自然災害における給水性能から見た防災 拠点の機能継続の予測【設備p.67】

・都市部のオフィスビルが災害時に何人収容できるか?給水性能から試算

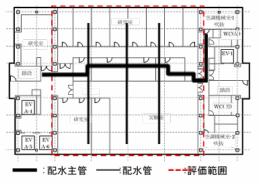
葛飾区の8階建オフィスビルが荒川氾濫で浸水(4m)した場合

2-8 自然災害における給水性能から見た防災 拠点の機能継続の予測【設備p.67】

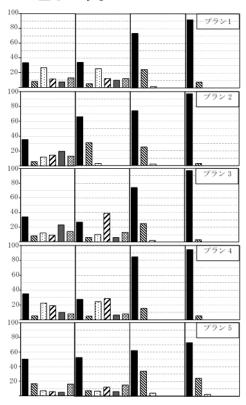
・都市部のオフィスビルが災害時に何人収容できるか?給水性能から試算

新宿区の29階建校舎の大地震後(計6ケース)

表6 想定ケース


ケース	受水槽	高置 水槽 (H)	高置 水槽 (M)	高置 水槽 (L)	上水 代替 利用	
1	×	×			×	
2	×	0	0	0	×	
3	×	0	0	0	0	
4	0	×	0	0	×	
5		0	0	0	×	
6						

			平日			休日			長期休暇		入試
ケース	発災 時刻[時]	8	12	18	8	12	18	8	12	18	13
1	外部受け 入れ可能	最大-	-	-	-	-	-	-	-	-	-
1	人数[人]	最小-	-	-	-	-	-	-	-	-	-
2	J)	-	-	-	13	-	-	31	-	-	-
_		_	-	-	-	-	-	-	-	_	_
3	"	110	-	-	172	-	-	212	_	_	_
J.	"	-	-	-	23	-	-	63	-	-	-
4		405	-	-	447	166	326	465	225	287	232
4	11	320	-	-	363	82	241	381	141	203	148
5	11	444	-	-	487	206	365	505	264	327	272
Ü	,,	354	-	-	396	115	275	415	174	236	181
c	^	2729	1245	1778	2822	2209	2557	2862	2337	2473	2353
0	"	1550	205	603	1622	1000	1357	1669	1130	1973	1153


2-9 超高層建物におけるスプリンクラー設備の耐震性能【設備p.71】

- 新宿校舎の配管の吊り材はあと何回の地震に耐えられるのか?
- ・間仕切り区画と耐震補強パターン別に許容応力度比を試算

プラン	概要	補強パターン
1	間仕切りのない空間	- ①主管
2	窓際 1~15 室利用	- ①主官 ②主管·配水管
3	窓際 16 室利用	③主管・枝管
4	窓際&中央部 28 室利用	④主管·配水管·枝管
5	構造体による散水障害	<u> </u>

 $0 \le \sigma_{\mathbf{r}} < 0.2$ $0.6 \le \sigma_{\mathbf{r}} < 0.8$

 $0.2 \le \sigma < 0.4$ $0.8 \le \sigma < 1.0$

:0. 4≦ σ r<0.0 :1. 0≦ σ r

2019年度 研究概要

非構造(内外装材)関係

都市建築物の非構造部材における性能評価 機能継続に関する研究 『***

熊本大地震2016のあ

国土交通省, 耐震化を巡る最近の動向 2017

耐震性能に関する事項

■防災拠点となる建築物の機能継続に係るガイド		
項目(案)	主な記載内容(案)	
機能継続の目標	・地震後の機能継続について、建築主・建築基準法で想定する大地震(震度	
立地計画・建築計画に関する事項	○立地計画例)地盤や敷地を踏まえた<mark>敷地の選</mark>○建築計画例)災害時に機能を確保すべき室の	
THE RESERVE OF THE PARTY OF THE		

構造躯体の耐震性能

○非構造部材の耐震性能

例) 地震により生じる構造躯体の変形や慣性力に対して、脱落等しない外装材を選択する

し姓来政権の側展注舵

例) 地震により生じる構造躯体の変形や慣性力に対して、脱落・転倒を防止するとともに、設備の機能 維持や修復容易性を確保する。

BAT

こと割れにくいものに交換 揺れるのを防ぐため、ワイ

2016. 2朝日新聞

3

×

5

X

4

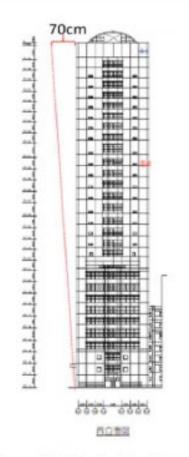
×

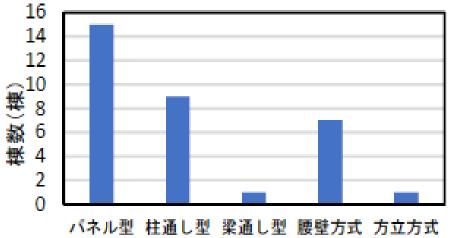
420

| 超高層| 非構造の耐震化を実現するには

構造の耐震性 > RC造、S造、木造、SRC造

- ×部位(屋根,天井,外壁,内壁,床)
- ×部位用途(構造材,下地材,仕上材,機能材)
- ×材料(コン,タイル,ALC,ECP,ガラス,壁紙,石膏B



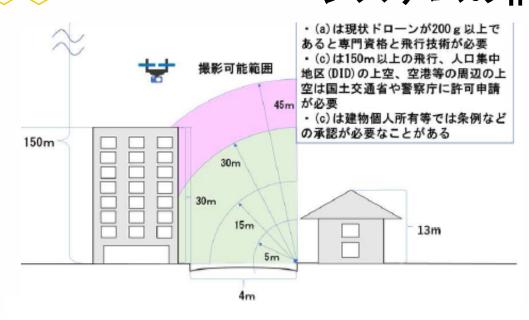


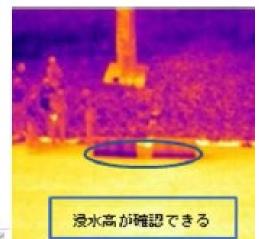
アスナーの健全度評価に向けた状態分析

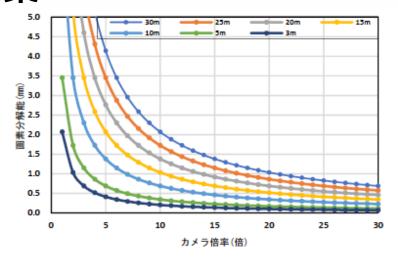
各階ごとの耐火被覆 ひび割れ・剥離部 発生率の評価

カーテンウォール工法

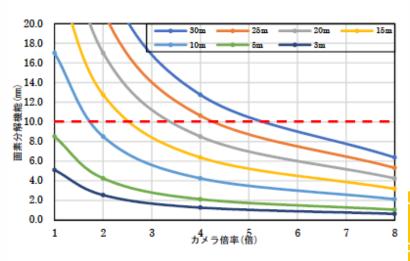
a) 工学院大学立面

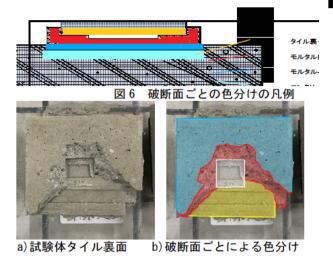

都市部のカーテンウォール工法別棟数


2外壁浸水】

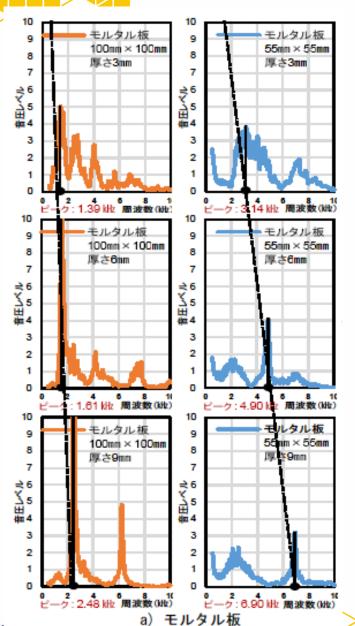

保证外籍《45"

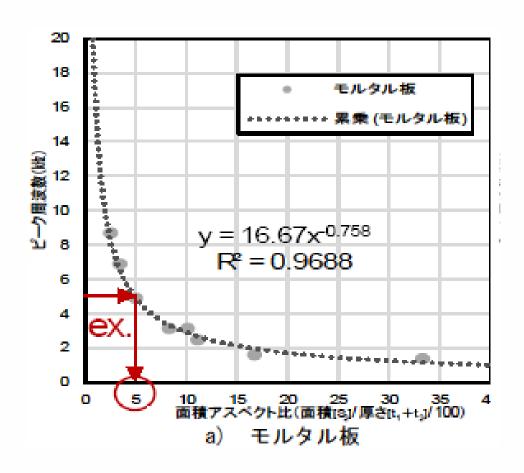
前別題第 125、80m 数据严度 125、80m


都市部の外壁浸水高さの非破壊評価といる。


a) 光学カメラ

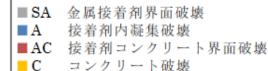
b) 赤外線カメラ

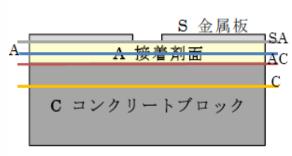

外壁剥落】打音診断によるタイル剥離剥落性評価)

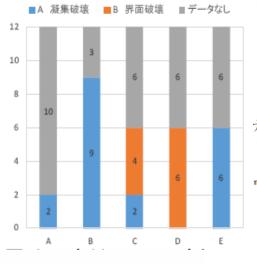


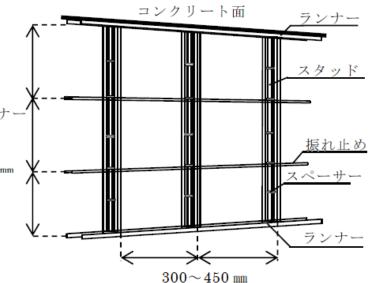
タイル種類 モルタルの張付け状態 (断面図) 面積:S1 ②タイル下からの ①モルタル面積:S2 ③空隙率:v ④目地高さ:h $45 \times 45 \text{ mm}$ モルタル厚さ:t2 厚さ:t₁ (mm²) (%) (mm) (mm) 表 11 参照 Secondorania de la constancia del la constancia de la constancia de la constancia de la constancia de la con 外装用 タイル 55mm × 55mm 内装用 17.5 17.5 タイル 押出成形 80mm × 80mm セメント板 27.5 27.5 MDF 板 100mm × 100mm

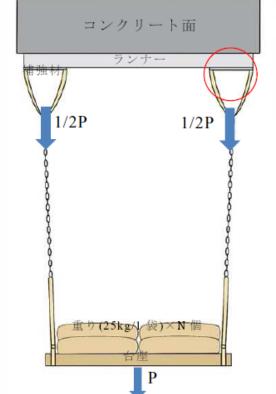
3 外壁剥落〕打音診断によるタイル剥離剥落性評価。

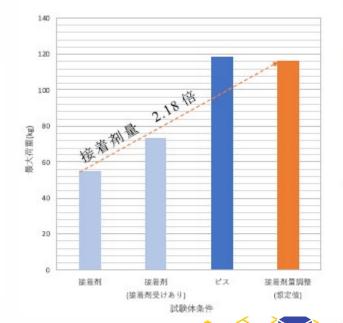


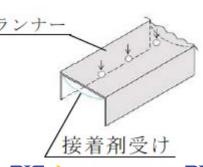

界壁改修〕持続型ー界壁改修システム




	接着剤	主成分
A	急速硬セメント	アルミナ、セメント
В	2 液性無機質接着剤	アルミナ,シリカ
С	1 液性無機系接着剤	酸化アルミニウム 70-75% アルカリ金属珪酸塩 20-25%
D	粉液分離型接着剤	〈粉体〉SiO ₂ 5-10, MgO 55-60%, ZrO ₂ 10-20%,合成雲母 10-15% 〈液体〉ほう酸ナトリウム 90-100%
Е	モルタル系接着剤	A1 ₂ O ₃ 69%, SiO ₂ 21%, Fe ₂ O ₃ 1.6%




界壁改修〕持続型ー界壁改修システム (デッッ゚)



*プレートはずれが見られるものがある b) 600°C加熱後

テーマ2 まとめと次年度

2019年度

- ・地震動:地表付近の断層の地震動への影響、ならびに建物被害 への直接的影響の評価、調査
- ・超高層:梁端部破断防止対策(構造)、ライン天井の崩壊防止 (非構造)、給水からみた滞留可能日数推定(設備)
- ・体育館:システムトラス屋根(熊本で被害)の支承部の実験
- ・内外装材:ドローンを用いた高層ビルCWの劣化調査、打撃による外壁タイル診断、など
- →総合的な耐震性能を有する建築モデルの開発

2020年度(最終年度)

研究のまとめ、社会実装のための研究発表