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Stochastic Source Model for Simulating Broadband Strong Ground Motion
in Layered Half-Space.

Yoshiaki Hisada (Kogakuin University)
Abstract The stochastic Green’s function method (Kamae et al, 1998), which simulates one-component of the far-field S waves at high frequencies, is extended to simulate three-components of the complete waves in layered half-spaces or homogeneous spaces at broadband frequencies. In the proposed method, ground motions from the small earthquakes, which correspond to the sub-faults of a large earthquake, are firstly simulated. Next, strong motions of the large earthquake are constructed by superposing the ground motions of the small earthquakes, using the scaling law between the small and large earthquakes. As for the source spectra, the broadband stochastic omega-square model is proposed, in which random and zero phases are used at higher and lower frequencies, respectively. The random phases are used to simulate random waveforms at higher frequencies, whereas the zero phases are used not only to simulate coherent strong motions at lower frequencies (i.e. the directivity pulse), but also to reproduce the seismic moments of the small earthquakes at the zero frequency. As for the Green’s functions, theoretical Green’s functions of layered half-spaces or homogeneous spaces are employed, which reproduce the complete waves including the P, S, and surface waves (e.g., Hisada, 1995). The proposed method is applied to the observed records for the 1994 Northridge earthquake, and obtained excellent agreements at broadband frequencies.
Keywaords broadband stochastic source model; three-components strong ground motions; layered half-space; stochastic Green’s function method; the scaling law; the 1994 Northridge earthquake
1. Introduction
The hybrid method, which consists of deterministic and stochastic methods for lower and higher frequencies, respectively, is widely used to simulate broadband strong ground motions (e.g, Kamae, K, et al, 1998, Pitarka, et al, 2000). The matching frequencies between the two methods are usually around 0.5 -2 Hz, which are the most important frequencies for engineering structures. However, results of the two methods show sometimes large differences in amplitudes and/or in arrival times, because of completely different methodologies between the two methods. To remedy this problem and connect the two results more smoothly, two approaches have been proposed. One approach is to extend a deterministic method to a stochastic method, by introducing stochastic randomness at higher frequencies. For example, Herrero and Bernard (1994) proposed the k-squared model to follow the omega-squared model, which is a kinematic fault model introducing randomness in slip distribution at higher frequencies. Hisada (2000, 2001) modified the model by introducing a pseudo-dynamic slip and random distributions not only in slip, but also in rupture time at higher frequencies. More recently, various similar models considering pseudo-dynamic slips, and random slip and rupture time (or rupture velocity) have been proposed (e.g, Guatteri et al, 2003, 2004, Hartzell et al, 2005). On the other hand, the other approach is to extend a stochastic method to a deterministic method by introducing theoretically coherent results at lower frequencies. For example, Kagawa (2004) proposed a try-and-error technique, in which several results are simulated using a stochastic source model, and then, one result is chosen to be consistent with a theoretical result at lower frequencies.

In this paper, we extend the stochastic Green’s function method (Kamae, et al, 1998) to a deterministic method, by introducing coherent phases in source spectra at lower frequencies. In addition, we extend the method, which simulates only one component of the far-field S-wave, to three components of strong motions. Onishi and Horike (2000, 2004) proposed a method to simulate three components of the far-field P, SH, and SV waves, and pointed out the limitations of the far-field waves for applying strong motions in near faults. We will further extend it to three components of the complete P, S, and surface waves in layered half-spaces or homogeneous spaces. Finally, we check the validity of the method, by comparing the results between the observations and simulations for the 1994 Northridge earthquake.
2.  Formulation of Broadband Stochastic Source Model
The formulation of the proposed method is similar to that of the stochastic Green’s function method. That is, we first generate ground motions from the small earthquakes, which correspond to the sub-faults of a large earthquake, as shown in Figure 1. Next, we simulate the strong motions of the large earthquake, by superposing those of the small earthquakes, considering the scaling law of the source spectra.
2.1  Strong Motions of Small Earthquakes in Layered Half-Space or Homogeneous Space
We extend the stochastic Green’s function method to simulate three components of the complete P, S, and surface waves in layered or homogeneous spaces. Using the representation theorem of a point dislocation source, velocities from a small earthquake is represented as follows, in the frequency domain.
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where, the superscript S stands for the small earthquake. The subscript i, j and k correspond to any components of the x, y, or z-axes, in which the summation convention is used.
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 is the kth component of the velocities at an observation point Y at the circular frequency, 
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 are the ith component of the unit vectors in the fault slip and the fault normal direction, respectively.
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 is the differentiation of Green’s function with respect to the jth direction. As for Green’s functions, we use the theoretical functions of the homogenous full-space or the layered half-space (e.g., Hisada, 1995).
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2.2  Broadband Stochastic Source Model and Moment Rate Function
In equation (1), 
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 is the source spectrum of a small earthquake, which is the Fourier spectrum of the moment-rate function. Its amplitude spectrum at frequency, f, is expressed as follows, using the omega-squared model (Brune, 1970; Boore, 1983).
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where, 
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 is the seismic moment (unit; dyne-cm). 
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 is the corner frequency (Hz), and expressed as follows (Brune, 1970). 
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where, 
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 is the shear wave velocity of the source layer (unit; km/s), and 
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 is the stress drop (unit; bar=0.1 MPa). One of the simplest stress drops is given as follows, using a circular crack model (Eshelby, 1957).
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where, S is the fault area.

The function P in equation (2) is a high-cut filter due to 
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, and one example is given as follow, 
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where, n=4 is recommended by Boore (1983). On the other hand, Tsuruki et al. (2006) proposed fmax=6.0 Hz and n=1.55 for large-scale earthquakes, using various observation data in Japan.
As for the phases of the source spectra, we propose the broadband stochastic source model by introducing zero phases at lower frequencies, in addition to random phases from -
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 to +
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 at higher frequencies. As shown below, the zero phases are the one of the simplest way to simulate low-frequency coherent waves (i.e., the directivity pulse), and also to reproduce seismic moment at the zero frequency. 
Here, we derive the theoretical moment-rate and moment functions of the omega-square model with zero phases. Equation (2) with zero phases is transformed to the following moment-rate function, using the Fourier inverse-transform.
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where, we assume P = 1 for simplicity. The corresponding moment function is given as follows.
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Figure 2 shows an example of the moment-rate functions (thin lines) and the moment functions (thick lines), for the case of 
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. The moment-rate function (“original” in the figure) is a simple axial symmetry function peaked at t=0 (sec), and the moment function is a smoothed ramp function with the rise time (duration) of 
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Next, we show an example of the broadband moment-rate and moment functions using both zero and random phases at lower and higher frequencies, respectively. Figure 3 shows results of the case for 
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. Figure 3a is a broadband phase spectrum, in which we use random phases between -
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 and +
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 at frequencies higher than fr (= 2 Hz), and phases gradually going to zeros at frequencies lower than fr. Figure 3b shows the Fourier amplitudes of source spectra, in which the thick line is the theoretical omega-squared model of equation (2), and the thin line is the iterated results using the phase spectrum of Figure 3a. Figure 3c shows the moment-rate functions, which correspond to the displacement waveforms in far-field. The thick and thin lines represent the results of zero phases and phases of Figure 3a, respectively; in the latter results, we cut the minus amplitudes and the amplitudes before t=0 (sec). Figure 3d shows the moment-functions, and Figures 3e and 3f are the first- and second-order derivatives of the moment-rate functions, which correspond to the velocities and accelerations in far-field, respectively. The broadband stochastic source model simulates successfully not only the coherent moment-rate and moment functions at lower frequency (see Figures 3c and 3d), but also the random waveforms at high frequencies (see Figures 3e and 3f).
As for the radiation patterns of the source model, we use the theoretical values of double couples at low frequencies, and the homogeneous and isotropic values at high frequencies, which are 0.52 and 0.63 for the P and S waves, respectively (Boore and Boatwrite, 1984). To simulate the P and S waves separately, we use the expansion/contraction source for the P wave, and a SH source (a lateral faulting model) for the S wave, whose fault plane is perpendicular to an observation point. We compute two sets of the high-frequency horizontal waves for the X and Y components, and allocate some of their values for the Z component, considering the dip and rake angles of the source model. 
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2.3  Scaling Laws between Small and Large Earthquakes
We use the following scaling law between the small and large earthquakes to generate strong ground motions of a large earthquake from the small earthquakes (Kamae et al, 1998). 
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where the superscripts L and S stand for the large and small earthquakes, respectively, and N is the scaling parameter between the large and small earthquakes. L, W, and D are the length, the width, and the average slip of the faults, respectively (see Figure 1). 
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 is the rise time of the slip function and nearly equals to the duration of the moment-rate function, which corresponds to 1/fC (s). C in equation (2) is the ratio of the stress drops between the large and small earthquakes (Kamae et al, 1998).
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  Using equation (8) with equations (2) and (3), we obtain easily the following scaling law of the source spectra.
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2.4  Construction of Strong Ground Motions of Large Earthquake

Finally we construct the strong ground motions of the large earthquake by superposing the strong motion from the small earthquakes, as follows.
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where 
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 and 
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 indicate the sub-fault numbers along the length and the width of the large earthquake, respectively, and 
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 is the rupture time of the 
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 sub-fault (see Figure 1). 

The function F in equation (11) is introduced to modify the slip function of the small earthquakes to that of large earthquake (e.g., Irikura, 1986, Ohnishi and Horike, 2004). We will test the two types of the F functions.
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Equation (12) is the F-function from the semi-empirical Green’s function method by Irikura (1986), which is the combination of the delta function and the box-car function with the duration of 
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. Equation (13), on the other hand, is the direct ratio of the slip functions between the small and large earthquakes (Ohnishi and Horike, 2004), in which the exponential function is assumed as the slip function (Ben-Menahem and Toksoz, 1963). In the above equations, we introduce the free parameters, 
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  We will check the values of parameters 
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 to be appropriate. Figure 4a and 4b show examples of the Fourier amplitudes of F functions for the case of N=10, 
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 s, where the thick and thin lines correspond to equations (12) and (13), respectively. All the functions become F = 10 and F = 1 at lower and higher frequencies, respectively. Equation (12) shows artificial oscillations due to the sin function, whereas equation (13) shows smooth functions, which indicates equation (13) is more appropriate to use. On the other hand, the figures show F functions for the cases of the constant 
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  It is easily conformed that equations (11) follows the scaling law of the source spectra, equation (10)
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Since F = N in equations (12) or (13) for 
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3.  Application to Near Source Strong Ground Motions of 1994 Northridge Earthquake

We apply the broadband stochastic source method to the observed records during the 1994 Northridge earthquake. Figure 5a shows the locations of the epicenter (a star mark in the figure), the fault plane, which is up-dipping toward the north-east, and the observation stations (triangle marks). As for the fault parameters, we refer the source inversion model by Wald and Heaton (1996), whose final slip distribution is shown in Figure 5b. Since the epicenter is located near the southern edge of the fault and the rupture propagates toward the north, the directivity pulses are observed at northern stations. On the other hand, random-like strong motions with longer durations are recorded near the hypocenter stations (see Figure 5a). In figure 5a, the white and shaded areas indicate the rock and sediment areas, respectively, whose structures are shown in Table 1 (Wald and Heaton, 1996). 
We will test four different source models, and simulate strong motion simulations (see Figure 6). The first model is the same as the model of Wald and Heaton (1996), where we simulate strong motions up to 1.5 Hz, using the same source parameters and the Green’s functions of the layered half-spaces shown in Table 1. The other three models are based on the broadband stochastic source model, and we simulate strong motions up to 12.5 Hz. The followings are the common source parameters in the three models, which are referred to Wald and Heaton (1996).

Scaling parameter:
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Corner frequency of the small earthquake: 
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The first model of the stochastic models uses the distribution of the slips and the rake angles by Wald and Heaton (1996), shown in Figure 5b. As for the stress drops, we use the average values over the fault using equation (4); 
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=2.98 MPa(29.8 bar) using S=4.32×108 m2 (L=18000 m, W=24000 m), M0=1.10×1019 N･m（average slip=0.7 m, 
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=2800×36002=3.63×1010 kg/m/s2) and C=2.436. 

The second model uses a simplified asperity model, where we assume two asperities, A1 and A2, shown in Figure 5b. Within the asperities and the background areas, we use the average values of the slips and the rake angles of those of the Wald model; 1.08 m and 
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 for A1, 1.46 m and 
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 for A2, 0.55 m and 
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 for the background area, respectively. As for the stress drops, we use a high value in the asperities following relation (Irikura, et al, 2003).
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where 
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(=9.04×108 m2) is the combined area of the asperities. As for the stress drop of the background area, we assume 
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S

=3.42×108 m2, M0=6.82×1018 N･m（average slip=0.55 m) in equation (4). 

The third model uses the same parameters as those of the second model except the stress drop; we assume the average value over the fault plane. Because it was reported that the high frequency strong motions for the Northridge earthquake came from areas around the asperities, rather than the asperities (Harztell et al, 1996).






	Layer
	Density

(kg/m3)
	Vp

(m/s)
	Qp
	Vs

(m/s)
	Qs
	Thickness (m)

	
	
	
	
	
	
	Rock
	Sediment

	1
	1700
	800
	40
	300
	20
	-
	100

	2
	1800
	1200
	60
	500
	30
	-
	200

	3
	2100
	1900
	100
	1000
	50
	500
	200

	4
	2400
	4000
	200
	2000
	100
	1000

	5
	2700
	5500
	400
	3200
	200
	2500

	6
	2800
	6300
	400
	3600
	200
	23000

	7
	2900
	6800
	600
	3900
	300
	13000

	8
	3300
	7800
	600
	4500
	300
	-


As for the Green’s functions for the stochastic source models, we use those of the homogeneous full-space, whose material properties are those of 6th layer in Table 1. We multiply the computed waves by the 1-D amplification factors due to the surface layers shown in Table 1. As for the quality factors, we use a frequency dependent Q,; 
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 is Qp and Qs in Table 1.
We simulated the strong motions at all the stations shown in Figure 5a However, we will show typical results in the fault normal components (FN=N32E) at selected stations, because of limited space. Figure 6 shows comparisons of velocities (left) and accelerations (right) between the observed records and simulated results at U56, SYL, U03, and U53, listed from the top to the bottom (see Figure 5a for the locations). In each column of the waves, the top waves are the observed records (shown as "observation (FN)" in the figures). As shown in Figure 5a, since U56 and SYL are located at the north of the fault, the forward directivity pulses are clearly observed. On the other hand, since U03 and U53 are near the hypocenter, the records show random characteristics with longer durations. 
The second waves in each column of the waves are the simulation results ("simulation (original)" shown in the figures), using the same model of Wald and Heaton (1996). Since the “original” model lacks high frequencies (maximum frequency = 1.5 Hz), it reproduces the observed velocities successfully, but not accelerations. 
The third to fifth waves in each column are the simulations using the first to third models of the broadband stochastic source model, respectively. All the three models successfully simulated the observations for both velocities and accelerations. Generally, the models overestimate the accelerations; this may be due to non-linear site effects, which we neglected. Among the three models, the Wald model, which has the most complicated source parameters with the constant stress drop, shows the best agreements with the observations ("simulation (Wald)" in the figures). Between the two simplified asperity models, the Asperity 1 model ("simulation (A1)" in the figures), which has the larger stress drops in the asperities, shows too large accelerations, especially at the stations close to the asperity 1 (U03 and U53). As mentioned above, it was reported that the high frequency strong motions came from the area around the asperities rather than the asperities for the Northridge earthquake (Harztell et al, 1996). This is confirmed that the simulated arrival time of the large accelerations at U03, which mainly come from the A1 asperity, is earlier than that of the observed record. Therefore, the model with the constant stress drop ("simulation (A2)" in the figures) seems better than the models with higher stress drop in the asperities.






4.  Conclusions
We proposed the broadband stochastic source model, which is the extension of the stochastic Green’s function method to simulate three-components of the complete P, S and surface waves from an extended fault model in layered half-spaces or homogeneous spaces. As for the source spectra, we proposed the broadband omega-square model, in which we use random and zero phases at higher and lower frequencies, respectively. The zero phases successfully reproduce not only to the coherent strong motions (i.e. the directivity pulse) at lower frequencies, but also the seismic moments at the zero frequency. As for the F function, which is the ratio of slip functions between the small and large earthquakes, we adopted Onishi and Horike (2004) rather than Irikura (1986), because of its smoother shape. In order to reduce the amplitudes of the F functions from N (scaling parameter) to 1 around 1 Hz, we proposed the adjusted rise time, shown in equation (14). Finally, we checked the validity of the proposed method for applying it to the observed records for the 1994 Northridge earthquake, and obtained excellent agreements between them in both the velocities and the accelerations.
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Table 1 Material property for the rock and sediment models
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Figure 3 Moment and moment-rate functions using the broadband stochastic source model (fc=0.25 Hz)
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Figure 4  Examples of F-functions using equations (12) and (13) (N=10)





Figure 1  Fault parameters of a large fault and sub-faults
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Figure 2 Normalized moment-rate and moment functions using the omega-square model with zero phases





Figure 5 1994 Northridge earthquake model and strong motion stations (Wald and Heaton, 1996)
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(a) Case for τL = 10 s                            (b) Case for τL = 10 s








(a) Locations of fault, epicenter, and stations   (b) Slip distribution and asperities A1 and A2





Figure 6 Comparisons of velocities (left) and accelerations (right) between the observed records 


and Simulations at U56, SYL, U03, and U53 (see Figure 5)
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