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Broadband Strong Motion Simulation in Layered Half-Space
Using Stochastic Green’s Function Technique
Y. Hisada

Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the ground motions using the empirical Green’s function technique (e.g., Irikura, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency), and to reproduce coherent strong motions at low frequencies (i.e. the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Ohnishi and Horike, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves, and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake. Results show excellent agreement with the observation records at broadband frequencies. At the same time, it is found that the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful as a high-frequency method of hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively, (e.g, the stochastic Green’s function method + finite difference methods; Kamae et al., 1998, Pitarka et al., 2000), because it reproduces the full waveforms including not only random characteristics at higher frequencies, but also theoretical and deterministic coherencies at lower frequencies.
Keywords  broadband strong motion simulation; omega-squared model; Green’s function of layered half-spaces; stochastic Green’s function method; empirical Green’s function method; the scaling law; 1994 Northridge earthquake
1. Introduction
Hybrid methods that combine deterministic and stochastic estimations for lower and higher frequencies are widely used to simulate broadband strong ground motions (e.g, Kamae et al., 1998, Pitarka et al., 2000). The matching frequencies between the two estimations are usually around 0.5 - 2 Hz, which are the most important frequency range for engineering structures. However, the two estimations sometimes show large differences in amplitudes, arrival times and waveforms in that frequency range, due to the completely different methodologies. Two approaches have been proposed to remedy this problem and connect the two results more smoothly. One approach is to introduce stochastic randomness in deterministic methods at higher frequencies. For example, Herrero and Bernard (1994) proposed the k-squared model, which is an omega-squared model based on a kinematic fault model using randomness in slip distribution at higher frequencies. Hisada (2000, 2001) modified the model by introducing pseudo-dynamic slip and the k-squared random distributions not only in slip, but also in rupture time at higher frequencies. More recently, various similar models considering pseudo-dynamic slips, and random slip and rupture time (or rupture velocity) have been proposed (e.g, Guatteri et al., 2004, Hartzell et al., 2005). These approaches are theoretically sound, but rather time consuming and not efficient at very high frequencies, especially when considering realistic layered half-spaces, because huge numbers of Green's functions are necessary in order to maintain the continuity of the rupture front (about 8 -10 source points per wavelength).
The second approach introduces deterministic coherency in stochastic methods at lower frequencies. Kamae et al. (1991) proposed the stochastic Green’s function method, in which the far-field S-waves from the stochastic point source (Boore, 1983) are superposed on an extended fault plane using the empirical Green’s function technique (Irikura, 1986). In order to extend this method to lower frequencies, Kagawa (2004) proposed a trial-and-error technique, in which several stochastic Green’s functions are simulated, and one can choose synthetics that are consistent with deterministic results. Onishi and Horike (2004) improved the method by introducing the theoretical radiation coefficients of the P-, SV-, and SH-waves and a ray tracing technique in layered half-spaces. These stochastic approaches are much faster to compute than the theoretical approaches, because it basically requires only one source point per sub-fault using simple Green's functions. 
The purpose of this paper is to improve the stochastic Green’s function method by introducing deterministic coherencies at lower frequencies, and by computing the complete Green’s functions of layered half-spaces. First, we propose the broadband stochastic omega-square model, whose phases are random at higher frequencies, and zero at lower frequencies, in order to reproduce both the random characteristics at higher frequencies and the deterministic coherencies (e.g., the directivity pulses) at lower frequencies. Second, we introduce the theoretical Green’s function of layered half-spaces using the wave-number integration technique based on the R/T (reflection/transmission) matrix (Hisada, 2001), which is numerically stable up to very high frequencies. Third, we propose a method to compute the theoretical P-, SV-, and SH-radiations at high frequencies (Onishi and Horike, 2004), by introducing P-, SV-, and SH-sources. Finally, we check the validity of the method by comparing observations with results from simulations for the 1994 Northridge earthquake.
2.  Formulation of the Broadband Stochastic Green’s Function Method in Layered Half-Space
2.1  Formulation of the Stochastic Green’s Function Method 
We briefly explain the original stochastic Green’s function method (Kamae et al., 1991; see also Kamae et al., 1998). In the method, one first generates ground motions from small earthquakes, which correspond to sub-faults of a large earthquake as shown in Figure 1. Next, one constructs the strong motions of the large earthquake by superimposing those of the small earthquakes, using the empirical Green’s function technique (Irikura, 1986, Yokoi and Irikura, 1991). 
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Although the original formulation is written in the time domain, we will express it in the frequency domain, as follows,
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where 
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 is the circular frequency, and the superscripts L and S stand for the large and small earthquakes, respectively. The subscript k corresponds to a component of the x, y, or z-axes. 
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where, L, W, D, and 
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 are the length, the width, the slip, and the rise time of the faults, respectively. 
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 in equations (1) and (2) are the ratio of the stress drops between the large and small earthquakes (Yokoi and Irikura, 1991).
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2.2  Broadband Omega-Square Model for Small Earthquakes and Moment Rate Function
Regarding the Green's functions from small earthquakes (
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), Irikura (1986) used observation records as semi-empirical Green’s functions, whereas Kamae et al. (1991) used the stochastic Green’s function of the far field S-waves in a homogeneous full-space (Boore, 1983). In addition, those methods assume random phases for the source spectra; this restricts the extension to lower frequencies. We extend the method by introducing coherencies in source spectra at lower frequencies and by using the theoretical Green’s function in a layered half-space. 
Using the representation theorem of a point dislocation source (e.g, Aki and Richards, 1980), the velocities at an observation point Y  from the small earthquakes are represented as follows,
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where, 
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 are observation and source points (see Figure 1). The subscripts i, j and k correspond to components of the x, y, or z-axes, where the summation convention is used. 
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 are the ith component of the unit vectors in the fault slip and the fault normal direction, respectively. 
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 is the derivative of the Green’s function with respect to the jth direction. The theoretical Green’s functions of the layered half-space are formulated by the wave-number integration method based on the R/T matrix method, and easily computed even at extremely high frequencies (e.g., Hisada, 1995).
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 in equation (4) is the source spectrum of a small earthquake, which is the Fourier spectrum of the moment-rate function. Assuming the omega-squared model (Brune, 1970; Boore, 1983), its amplitude spectrum at a frequency, 
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where, 
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 is the seismic moment of the small earthquake (in dyne-cm), and is expressed as follows using equation (2).
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where, 
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 is the shear wave velocity of the source layer (in km/s), and 
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 is the stress drop (in bar = 0.1 MPa). The function P in equation (5) is a high-cut filter due to 
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where, n=4 is recommended by Boore (1983). On the other hand, Tsuruki et al. (2006) proposed fmax=6.0 Hz and n=1.55 for crustal earthquakes, using various observation data in Japan.
We propose the broadband omega-square model using not only random phases from -
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 to +
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 at higher frequencies, but also zero phases at lower frequencies. The use of zero phases is the one of the simplest techniques to reproduce a coherent moment-rate function and thus, to simulate the coherent waves at low frequencies. To explain this, we first derive the theoretical moment function of the omega-square model by assuming zero phases. Equation (5) with zero phases is transformed into the following moment-rate function, using the Fourier inverse-transform.
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where, we assume P = 1 for simplicity; numerical results show that the inclusion of P gives a smoother shape of the moment-rate function. The moment function corresponding to equation (9) is expressed as follows.
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Figure 2 shows an example of the moment-rate function and the corresponding moment functions, for the case of 
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. The original moment-rate function (the thin blue line with “original” in the figure) is a simple axial symmetry function peaked at t=0 (s), and the moment function (thick blue line) is a smoothed ramp function with duration (rise time) of 
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Next, we show an example of the broadband moment-rate and moment functions using both zero and random phases at lower and higher frequencies, respectively. Figure 3 shows results of the case for 
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. Figure 3(a) is a broadband phase spectrum, in which we use random phases between -
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 at frequencies higher than 
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. Figure 3(b) shows the Fourier amplitudes of the source spectra, in which the black line is the theoretical omega-squared model of equation (5), and the red line represents the iterated results obtained by using the phase spectrum of Figure 3(a). Figure 3(c) shows the moment-rate functions with a duration of about 
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= 4 s, which correspond to the displacement waveforms in far-field. The black and red lines represent the results using the zero phases and the phases of Figure 3(a), respectively. In the latter result, we clip the amplitudes before t=0 (sec) and negative values. Figure 3(d) shows the moment-functions, and Figures 3(e) and 3(f) are the first- and second-order derivatives of the moment-rate functions, which correspond to the velocities and the accelerations in the far-field, respectively. The results without random phases show unrealistic waveforms, especially in the acceleration. On the other hand, the broadband omega-square model reproduces not only the coherent moment-rate and moment functions at lower frequencies (see Figures 3(c) and 3(d)), but also the random waveforms at high frequencies (see Figures 3(e) and 3(f)).
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2.3  High-Frequency Source Model for Small Earthquakes
Here, we will describe the procedure to introduce the radiation coefficients of P-, SV- and SH-waves in a layered half-space at high frequencies, and to combine these waves with the theoretical radiation pattern of a double couple source at low frequencies. In the case of the far-field in homogeneous media, it is easy to combine the radiation coefficients at high frequencies with the theoretical radiation pattern at low frequencies, because the P- and S-waves are expressed independently (e.g., Pitarka et al., 2000). 

For the high frequency radiation coefficients, Boore (1983) used the homogenous radiation coefficient of the S-wave (=
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, Prob. 4.6 in Aki and Richards, 1980), by averaging the far-field S-wave over whole focal sphere in a homogenous space. Boore and Boatwright (1984) calculated numerically coefficients of P-, SV- and SH-waves for various combinations of source 
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and takeoff angles. Recently, Ohnishi and Horike (2004) derived the analytical radiation coefficients of the P-, SV- and SH-waves in a homogenous space, as follows,
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where, 
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 are the dip and rake angles of a source. 
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 is the same as Prob. 4.6 in Aki and Richards (1980). It is easily confirmed that the root mean square value of 
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In order to apply these coefficients to a layered half-space, we need to generate independently the P-, SV-, and SH-waves. We compute them approximately by modifying the representation theorem of equation (4). First, we employ the explosive source for generating the P-wave, using the following equation (see Figure 4(a)),
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Next, we use dip and strike slip sources to generate the SH- and SV-waves, respectively. As shown in Figures 4(b) and 4(c), their fault planes are set to be perpendicular to the lines from the source to the observation points. For these cases, the high-frequency waves from the S sources are expressed by the following equations. 
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where, 
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 is the radiation coefficient of the SV- and SH-waves in equation (11), and the slip vectors (
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) are those of the dip and strike slip sources shown in the Figures 4(b) and 4(c) for the SV- and SH-waves, respectively. 
It is well know that two horizontal components do not show large differences in amplitudes at high frequencies as compared with those at low frequencies. In order to make the two horizontal components nearly equal at high frequencies, first, we divide the radial components of the results from the P- and SV-sources equally into the X- and Y-components multiplied by 
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. Similarly, we divide the transverse components from the SH-source into the two components equally. Ｗe generate two sets of the broadband omega-square model with different random phases, and use their phases in the two components such that they are independent of each other. Finally, we superpose those high-frequency results with the low frequency results from equation (4), by using high-pass and low-pass filters, respectively. We use a trapezoidal filter with tapering amplitudes from one to zero at matching frequencies.
2.4  F-Functions and Scaling Laws of Source Spectra 
It only remains to describe the procedure we use for selecting the F-function in equation (1) to ensure that the scaling law of the source spectra between the small and large earthquakes will be obeyed. Under the assumptions of point sources and the omega-square model with similar values of fmax, the scaling law is expressed as follows (e.g., Yokoi and Irikura, 1991).
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The above scaling law is easily confirmed using equations (5) and (2) for low frequencies, and equations (5), (7), (3), and (2) for high frequencies.
We test two types of the F functions.
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Equation (15) is used in the semi-empirical Green’s function method by Irikura (1986), which is the combination of the delta function and the box-car function with a duration of 
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We confirm that equations (1) with the use of the two trial F-functions follows the scaling law of equation (14), by using equations (4) and (1).
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where we assume that the focal mechanisms, Green's functions, and the ratios of the stress drops among the small and large earthquakes are similar. For low frequencies, equation (17) is of order N3, because of the coherent summations of N with respect to 
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We introduce the free parameters, 
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, in equations (15) and (16) to adjust the durations of the slip functions of the large earthquake. Figure 5(a) and 5(b) show examples of the Fourier amplitudes of F-functions for the cases of N=10, 
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Figure 6 shows various F-functions of equation (16), corresponding to different values of 
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. Values from 0.2 to 1.0 of this parameter seem appropriate, because they reduce the amplitudes between 0.5 and 2 Hz. Therefore, we recommend the following values for equations (15) and (16).
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3.  Application to Strong Ground Motions of the 1994 Northridge Earthquake
3.1  Ground Motions of a Small Earthquake
We apply the proposed method to observed records during the 1994 Northridge earthquake. Before simulating the main motions, we will check ground motions from a small earthquake using various Green's functions. Table 1 shows the material properties for rock and sediment site models (Wald et al., 1996). Table 2 shows the source parameters of a trial small earthquake, and Figure 7 shows the locations of the source and the three stations, whose epicentral distances are 1, 10, and 100 km along the y-axis. Figure 8 shows the four models whose layered structures correspond to the rock layers of Table 1. Model 1 computes the far-field S-waves at a depth of 4 km under the stations, and multiplies the 1-D amplification factor of the S-waves using the overlying three layers. Model 2 computes the P and S-waves in the homogenous full space including the intermediate and near-field terms, and multiplies by the 1-D amplification factors of the P and S-waves for the vertical and horizontal components, respectively. Models 3 and 4 compute the complete waves in the layered half-spaces; Model 3 uses the top four rock layers of Table 1, whereas Model 4 uses all the layers in order to reproduce the reflection waves from the Conrad and Moho discontinuities
.
	Layer
	Density

(kg/m3)
	Vp

(m/s)
	Qp
	Vs

(m/s)
	Qs
	Thickness (m)

	
	
	
	
	
	
	Rock
	Sediment

	1
	1700
	800
	40
	300
	20
	-
	100

	2
	1800
	1200
	60
	500
	30
	-
	200

	3
	2100
	1900
	100
	1000
	50
	500
	200

	4
	2400
	4000
	200
	2000
	100
	1000

	5
	2700
	5500
	400
	3200
	200
	2500

	6
	2800
	6300
	400
	3600
	200
	23000

	7
	2900
	6800
	600
	3900
	300
	13000

	8
	3300
	7800
	600
	4500
	300
	-




	depth
	strike
	dip
	rake
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Figures 9(a) and 9(b) show the three components of the computed displacements and accelerations, respectively. We use fmax = 6 Hz, and n=1.55 in equation (8), the boundary frequency 
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 between the coherent and random phases is 2 Hz (see Figure 3(a)), and the matching frequencies between the theoretical and homogeneous radiation coefficients are 0.5 – 2.0 Hz. All the waves are computed up to 12.5 Hz, and high-cut filtered from 10 to 12.5 Hz. Note that the baselines of the waves for Models 1-3 are shifted upward in the figures.
At station 1, which is nearly above the source, the four models show similar results in the horizontal components of motion, because the 1-D S-waves are dominant. However, Models 1 and 2 overestimate the horizontal components compared with Models 3 and 4, because they neglect the geometrical attenuations within the upper three layers with the 4 km thickness. In addition, Model 1 shows much smaller amplitudes in the vertical components, and smaller horizontal components at lower frequencies (see the EW components of the displacements around 4 s) than those of other models. This is because Model 1 lacks the P-waves and the near-field and intermediate terms of the S-waves. On the other hand, the vertical accelerations of all the models at Station 1 are much smaller than those of the horizontals, because the SV and SH sources are dominant in horizontal components than the vertical ones for stations above the source (see Figures 4(b) and 4(c)). These results appear to contradict those of the empirical relations, in which the vertical accelerations are generally around one-half to one-third those of the horizontals. Thus, in order to generate realistic vertical high frequency S-waves at a station above a source, we may need to introduce some modifications in the source models by considering the empirical relations in the future.



Models 1 and 2 show unrealistic waveforms with much larger amplitudes and shorter durations than those of Models 3 and 4, as the stations go farther away from the source (Stations 2 and 3). In particular, they tend to overestimate the vertical components, because the SV waves in a simple homogeneous media become dominant in vertical components at a large distance. On the other hand, the results between Models 3 and 4 are almost identical at Stations 1 and 2, whereas Model 4 generates more complicated accelerations at Station 4 than those of Model 3. This is because the reflected waves are generated from the Conrad and Moho discontinuities (e.g.,Burger et al., 1987; see accelerations for t > 30 s)



3.2  Strong Ground Motion of the 1994 Northridge Earthquake
Finally, we simulate the strong motions during the 1994 Northridge earthquake. Figure 10(a) shows the locations of the epicenter (the star in the figure), the fault plane, which is dipping toward the south-west, and the observation stations (triangle marks). The white and shaded areas of the figure indicate the rock and sediment areas, respectively, whose structures are shown in Table 1 (Wald et al., 1996). Figure 10(b) shows the final slip distribution of the strong-motion inversion model by Wald et al. (1996). 


We test three models; the first model is identical with the strong-motion inversion model by Wald et al. (1996), where the dislocation time history for each sub-fault is represented by the integral of three isosceles triangles with a duration of 0.6 s and an interval time of 0.4 s; each triangle is allowed to have different rake angles. We simulate these strong motions up to 1.5 Hz using the layered structures shown in Table 1. The other two models are the same as Models 2 and 4 in Figure 8, where we simulate strong motions up to 12.5 Hz, and use the high-cut filter from 10 to 12.5 Hz. The followings are the common source parameters in the last two models:
Scaling parameter:
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We use the distribution of the final slips and the rake angles of Wald et al. (1996), shown in Figure 10(b). For the stress drop, we use the average values over the fault plane, simply assuming a circular crack model (Eshelby, 1957).
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where, S is the fault area. We obtain 
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=2.98 MPa (29.8 bar) using S=L×W m2 (L=18000 m, W=24000 m), and M0=1.10×1019 N･m.
Due to limited space, we will show results at four stations, U56, SYL, U03, and U53 (see Figure 10(a)). Figure 11(a) and 11 (b) show the FN (fault normal, N32E), FP (fault parallel, N58W), and UD components of the velocities and accelerations, respectively, at the four stations. In each case, we plot the observed records (shown as "Observation" in the figures), the simulated results using the original model ("Original"; Wald et al., 1996), and Models 2 and 4 (see Figure 8). Note that the baselines of the waves for Observation, Original and Model 2 are shifted upward in the figures. 

Since the original model lacks frequencies higher than 1.5 Hz, it reproduces the observed velocities well, but not the accelerations. On the other hand, Models 2 and 4 simulate well the horizontal velocities and accelerations of the observations. As for the vertical components, Model 2 generally overestimates the velocities, because the SV-waves of Model 2 become dominant in the vertical direction at a certain distance, as seen in the previous section, 3.1. On the contrary, Model 4 tends to underestimate the vertical accelerations, because the SV- and SH-waves are dominant on the horizontal components at the stations above sources 
Since U56 and SYL are located at the north of the epicenter, the FN components of their velocities show the forward directivity pulses, namely, large amplitudes and short durations. These coherent waves are successfully reproduced by all the models. On the other hand, the velocity records of U03 and U53 near the epicenter show near random characteristics, namely, smaller amplitudes and longer durations. These waves are also successfully simulated by all the models, even though the simulations generally show shorter durations than the observations, because they do not include the scattering effects.
Figure 12 shows the Fourier amplitudes of the acceleration records (thick gray lines), the original model (thick black lines), and Models 2 and 4 (thin red and blue lines, respectively). The original model agrees well with the observations at frequencies less than 1 Hz, whereas Models 2 and 4 successfully reproduce the observations at broadband frequencies. In particular, the results of Model 4 are almost identical with those of the original model at frequencies lower than 0.2 Hz, whereas Model 2 is not able to reproduce them (e.g., the FP components at U56 and SYL). 

4.  Conclusions
We propose a practical method for simulating the three components of broadband P, S and surface waves in layered half-spaces from an extended fault model, which is an extension of the original stochastic Green's function method (e.g, Kamae et al., 1991). The simulated examples show that the far-field S-waves, which are used in the original method, have imitations not 
wave






only in the near-field, but also in the far-field, because they exclude the reflected waves from the Moho and Conrad discontinues. We also confirm that the method successfully simulates the observed strong motions of the 1994 Northridge earthquake. On the other hand, we find that the method needs improvements; first, it does not reproduce large amplitudes in vertical high frequency S-waves in the epicentral area, because the upward propagating SV waves are dominant on the horizontal component. The assumption of horizontally flat layered structures may be an oversimplification in some cases, and we may need to introduce an empirical relation between horizontal and vertical amplitudes. Second, the durations of the simulated waves are generally shorter than those of the observations, even though we introduced the complete waves in layered structures. To remedy this problem, we plan to test models in the future that include thin layers to reproduce scattering effects, and/or introduce an empirical duration function. Despite these shortcomings, the proposed method will be a much more effective tool than the original method for modeling the high frequency contributions in the hybrid methods (e.g, Kamae et al., 1998, Pitarka et al., 2000), because the method reproduces not only stochastic randomness at high frequencies, but also deterministic coherencies at low frequencies, using the complete waves in layered half-spaces.
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Figure 10 1994 Northridge earthquake model and strong motion stations (Wald et al., 1996)
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Table 1 Material properties for the rock and sediment models (Wald and Heaton, 1996)
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Figure 3 Moment and moment-rate functions using the broadband stochastic source model (fc=0.25 Hz)





Eq (16): τL/α=0.5





(e) First derivative of moment-rate function　    (f) Second derivative of moment-rate function
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(c) Moment-rate function (far-field displacement)     (d) Normalized Moment function





Eq (15): τL/2β=0.5
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(a) Fourier phase spectrum (fr=2 Hz)          (b) Omega-squared Fourier amplitude spectra
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Figure 5  Examples of F-functions using equations (15) and (16) (N=10)





Figure 1  Fault parameters of a large fault and sub-faults
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Figure 2 Normalized moment-rate and moment functions using the omega-square model with zero phases





(a) Locations of fault, epicenter, and stations   (b) Slip distribution and asperities A1 and A2
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Figure 12  Observed and simulated Fourier amplitudes of the accelerations at U56, SYL, U03 and U53 for the 1994 Northridge earthquake
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Figure 4. The explosive, dip, and strike slip sources to generate the high-frequency P-, SV- and SH-waves, respectively. 
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Figure 6 F-functions using equation (16)
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Table 2  Source parameters of a small earthquake





Figure 7  Locations of the small earthquake (source point) and the observation stations
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(b) Observed and simulated accelerations at U56, SYL, U03 and U53


Figure 11 Observed and simulated waves for the 1994 Northridge earthquake. FN and FP represent the fault normal and parallel components (N32E and N58W), respectively.
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Figure 8  Four models (the numbers in the layers correspond to those in Table 1)
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(a) Displacement waves


Figure 9 (continued)








(a) Observed and simulated velocities at U56, SYL, U03 and U53


Figure 11 (continued)








 (b) Acceleration waves 


Figure 9  Simulated waves from the small earthquake using the four models of Figure 8


(Note that the baselines of the waves for Models 1-3 are shifted upward)
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