

エ学院大学からの報告 エ学院大学新宿キャンパス(28F)の揺れと被害

エ学院大学建築学部
 まちづくり学科
 ス田嘉章
 まちづくり学科
 久保智弘
 建築学科
 山下哲郎

東北地方太平洋沖地震(M9.0)の概略 一防災科学技術研究所 岡田義光氏の速報(2011/3/25)より一

PERCENCIP	Notiet	Weak	Light	Nodenie	Strong	Very strong	Severe	Voient	Extern
POTENTIAL DANAGE	8010	NOTO	rore	Vory light	Light	Moderate	Modosto Hosy	Hoavy	Very Heavy
PEAKACCING	4.17	.27.2.4	1.4-6.7	3.8-6.2	8.2-18	10 34	24-03	65124	>124
PEAN FELICIENTS	01.1	111-1.1	1.170.4	3,4-6,1	8.1-10	IDJI	10-00	00-110	3/ 10
INDITI JADICTAL INTERBITY	18	340	- IV	V.	11	W8	VIII	2.00	

(b)米国 USGS による東北地方

東北地方太平洋沖地震(M9.0)の概略 - 防災科学技術研究所 岡田義光氏の速報(2011/3/25)より-

表1 東日本太平洋沖における海溝型地震の長期発生予測(地震調査研究推進本部による)

海 域	予想されるマ	ッグニチュード	今後 30 年以内 の発生確率	平均発生間隔		
三陸沖北部	M8.0 前後		$0.5\%{\sim}10\%$	約97年		
三陸沖中部	(過去に大地震がなく評価不能)					
三陸沖南部海溝寄り	M7.7 前後	連動時は	$80\% \sim 90\%$	105 年程度		
宮城県沖	M7.5 前後	M8.0 前後	99%	37 年		
福島県沖	M7.4 前後(褚	夏数地震が続発)	7%程度以下	400年以上		
茨城県沖	M6.7~M7.2		90%程度以上	約21年		
房総沖	(過去に大地震がなく評価不能)					
三陸沖北部から	M8.2 前後(清	き波地震)	20%程度	133 年程度		
房総沖の海溝寄り	M8.2 前後(正	5断層型地震)	$4\%{\sim}7\%$	400~750年		

・「宮城県沖」は、過去200年間にM7クラスの6回の地震が 平均37.1年間隔で繰り返されており、今後30年間の発生 確率は99%という我が国で最も高い値と推定されていた。 ・本年3月9日には、沖合の「三陸沖南部海溝寄り」の海域 でM7.3の地震が発生した。これによって「宮城県沖」と「三 陸沖南部海溝寄り」が連動するM8級の大地震の危険性 はやや薄らいだとも考えられていた。

図 10 東日本太平洋沖における海溝型地震の発 生領域分け(地震調査研究推進本部による)

東北地方太平洋沖地震(M9.0)における 地震動について(過去の地震動との比較)

1944年:東南海地震(M7.9) 1946年:南海地震(M8.0) 1968年:十勝沖地震(M7.9) 1993年:北海道南西沖地震(M7.8) 1994年:三陸はるか沖地震(M7.5)

過去の巨大地震でも発生

図4 (a)太平洋側,および(b)日本海側から見た津波最大波高の分布(気象庁資料に加筆合成) 8m以上を記録した宮古,大船渡のデータは含まれていない。

・岩手県の釜石,石巻,大船渡などでは,津波の第1波が14時46分(地震発生と同時)に到着し,最大波は15時20分前後にこれらの地を襲った。

・気象庁では、14時49分に岩手県、宮城県、福島県に津波警報(大津波)を発令した。そして、15時14分には青森県太平洋沿岸、茨城県、千葉県九十九里・外房、15時30分には北海道太平洋沿岸と伊豆諸島などが対象に加えられた。

東北地方太平洋沖地震(M9.0)における 緊急地震速報について

防災科学技術研究所による 緊急地震速報

あと 43 秒で新宿に震度3の揺れが来ます。

🗟 message

あと100秒で長周期地震動による大きな揺れが来ます。

東北地方太平洋沖地震(M9.0)における 緊急地震速報について

なぜ、緊急地震速報による推定震度 は小さかったか? ・震源距離の問題 ・マグニチュードの問題 推定震度は、距離減衰式を用いて推定 している。 $\log V = b - \log(X + cv) - kv * X$ 緊急地震速報では、震源からの予測 対象地点までの震源距離を利用。 しかし、本来距離減衰式では、断層 からの予測対象地点までの断層最短 距離(もしくは等価震源距離)を利用。 マグニチュードが大きくなると断層も大きく なる。M9.0と評価されたのは、13日

$$M_0 = \mu L W D_f$$

工学院大学新宿校舎の概要

対象建築物概要

建物名称	大学棟(工学院大学高層棟)
建築場所	東京都新宿区西新宿
竣工年	1989年
基準階面積	1170m ⁴
階数	地上29階、地下6階、塔屋1階
アスペクト比	NS:5.59、EW:3.72
	地上:鉄骨造(ブレース付ラーメン架構)
構造種別	地下1~2階:鉄骨鉄筋コンクリート造
	地下3~6階:鉄筋コンクリート造

部材寸法(在)		
階数	寸法	
30	□-488 × 19	
20	□-500 × 25	
10	□-530 × 40	
1	$\Box - 550 \times 50$	

部材寸法(梁)

階数	寸法
30	H-600 × 300 × 12 × 25
20	$H-600 \times 350 \times 12 \times 32$
10	$H-600 \times 400 \times 12 \times 32$
2	H-600 × 350 × 12 × 32

<u>, L, GLdH</u>	ム(ハヘハノ木)				
階数	寸法				
30	$H-1000 \times 320 \times 19 \times 25$				
20	$H-1000 \times 300 \times 19 \times 28$				
10	$H-1000 \times 350 \times 19 \times 28$				
2	$H-1000 \times 320 \times 19 \times 25$				
	寸法				
Y14通り	H-250 × 250 × 9 × 14				
X2通り	H-250 × 250 × 9 × 14				
スーパー	- H-300 × 300 × 12 × 22				

フレーム

如サナキ (ナフパン) かい

校舎の揺れの解析

立体モデル仮定条件及び解析条件

- ・各階の床は剛床と仮定
- ・柱脚の支持条件は固定と仮定
- ・梁は床スラブの剛性,強度を考慮した合成梁として評価
- ・パネルゾーンは剛域と仮定

・人力加振観測結果より減衰定数1%のレーリー減衰

観測記録 vs. 解析結果(波形)

東北地方太平洋沖地震-NS方向29階

東北地方太平洋沖地震-EW方向29階

28階 天井材の落下

25階コピー機の移動

25階 書類の散乱

21階 重いキャスター付き ラックの移動

20階 薬品入れの引き出しが 飛び出し

24階の被害について

固定していない棚の 転倒

天井材のずれ

間仕切り材の破損 (揺れている最中、学生 さんが押さえていました)

今後に向けて (大変形加力装置を利用した実験)

大変形加力装置振動台

今年度から実験を開始予定。 振動台にオフィス家具や人体模型などを置き、オフィ ス家具の挙動やその衝撃力について実験を行います。

おわりに

- 2011年東日本大震災(東北地方太平洋沖地震)は、 Mw9.0で我が国で過去最大の地震
- 東北地方においては強震動被害より津波被害が顕著
- 新宿における地震動について、東海・東南海連動型
 地震の方が、今回の地震動よりも長周期地震動が大きくなる可能性がある。
- エ学院大学新宿キャンパスの揺れについて、今後立体モデルの改良を行う必要がある。
- 今回の被害情報を利用して、家具固定の推進や大変 形加力装置による実験などにより、負傷者の軽減を図 る。