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Domain Reduction Method for Three-Dimensional Earthquake Modeling

in Localized Regions, Part I: Theory

by Jacobo Bielak, Kostas Loukakis, Yoshiaki Hisada, and Chiaki Yoshimura

Abstract This article reports on the development of a modular two-step, finite-
element methodology for modeling earthquake ground motion in highly heteroge-
neous localized regions with large contrasts in wavelengths. We target complex geo-
logical structures such as sedimentary basins and ridges that are some distance away
from the earthquake source. We overcome the problem of multiple physical scales
by subdividing the original problem into two simpler ones. The first is an auxiliary
problem that simulates the earthquake source and propagation path effects with a
model that encompasses the source and a background structure from which the lo-
calized feature has been removed. The second problem models local site effects. Its
input is a set of equivalent localized forces derived from the first step. These forces
act only within a single layer of elements adjacent to the interface between the
exterior region and the geological feature of interest. This enables us to reduce the
domain size in the second step. If the background subsurface structure is simple, one
can replace the finite-element method in the first step with an alternative efficient
method. The methodology is illustrated in a companion paper (Yoshimura et al.,
2003) for several 3D problems of increasing physical and computational complexity.
We consider first a flat-layered, stratigraphic system. For this simple case, the first
step can be carried out by means of 3D Green’s function evaluations. The extension
to more general problems is illustrated by two examples: a basin and a hill, with the
same background stratigraphy. To verify the two-step procedure with a problem for
which the finite-element method is used throughout, we model ground motion in a
small region of the Los Angeles Basin, using both the two-step domain-reduction
method and the traditional approach in which the computational domain contains
both the source and the geological region of interest.

Introduction

In the past 10 years tremendous growth has occurred in
the development of physics-based 3D models for simulating
earthquake ground motion in seismic regions. During this
period, numerical modeling methods for anelastic wave
propagation that take into consideration the earthquake
source, propagation path, and local site effects have become
increasingly available. There are several types of such meth-
ods. Boundary element and discrete wavenumber methods
have been popular for moderate-sized problems with rela-
tively simple geometry and geological conditions (e.g.,
Mossessian and Dravinski, 1987; Kawase and Aki, 1990;
Hisada et al., 1993; Sánchez-Sesma and Luzón, 1995; Bou-
chon and Barker, 1996). Finite differences (e.g., Frankel and
Vidale, 1992; Frankel, 1993; Graves, 1993, 1996; Olsen et
al., 1995; Pitarka, 1999; Stidham et al., 1999; Sato et al.,
1999) and finite elements (e.g., Lysmer and Drake, 1971;
Toshinawa and Ohmachi, 1992; Bao, 1998; Bao et al., 1998;
Aagaard et al., 2001) are better suited for larger-sized prob-

lems that involve realistic basin models with highly hetero-
geneous materials, because of their flexibility and simplicity.
Computer codes based on these methods have been used
successfully to model earthquake ground motion in a variety
of applications; for instance, near-source ground motion
(e.g., Wald and Heaton, 1994), basin structure and directiv-
ity effects (e.g., Olsen and Archuleta, 1996; Pitarka et al.,
1998), and edge effects (e.g., Kawase, 1996; Hisada et al.,
1998; Aagaard et al., 2001).

Despite the recent advances in ground-motion simula-
tion capabilities for earthquake excitation (Fig. 1), research-
ers nowadays are still forced to make restrictive simplifica-
tions and approximations in “3D simulations,” such as
limiting the maximum frequency or lowest wave velocities
that can be considered. One reason is that most methods
currently in use for large-size problems are based on uniform
structured grids. The grid size, which is proportional to the
lowest shear wave velocity in the model and inversely pro-
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Figure 1. Schematic of semi-infinite seismic re-
gion, including causative fault, geological structure
and local features.

portional to the highest frequency of interest, is held constant
throughout the computational domain even if the softest soils
occupy only a small region. Finite-element and other meth-
ods with irregular grids (Bao et al., 1998; Pitarka, 1999; Aoi
and Fujiwara, 1999; Kristek et al., 1999; Oprsal and Zah-
radnı́k, 1999, 2002) are more flexible, because they can bet-
ter tailor the mesh size to the local wavelength of the prop-
agating waves. Regardless of their differences, one feature
that is common to traditional finite-difference and finite-
element methods is that the ground motions near the caus-
ative fault, and those along the propagation path and within
the region of interest, are all calculated simultaneously, us-
ing a single model that encompasses the whole geological
structure, from the fault region to the region of interest.
Thus, source, propagation path, and local site effects are
determined all at once. This single-pass approach works well
for many applications. However, if the source is far from the
region of interest, the problem size becomes exceedingly
large and the methods become ineffective.

An alternative formulation, which avoids the need to
represent accurately the geometric and material properties of
the whole region within a single model, consists in sub-
dividing the problem into two sequential parts. First, one
considers a background structure from which the localized
geological features have been deleted, and calculates the cor-
responding ground motion. This computation requires a grid
or mesh that is only as fine as dictated by the softest material
in the background model; it needs to be performed only once
for a specified earthquake source. In a second step, only a
reduced region of interest which contains the localized fea-
ture is modeled to the desired accuracy. The ground motion
obtained in the first step is used to determine a set of local-
ized equivalent forces, which are then applied as input over
a computational domain that is only slightly bigger than the
geologic feature. Only the second part of the computation
needs to be repeated if any system parameters within the
region of interest need to be varied. Such a two-step pro-
cedure was developed by Bielak and his coworkers in the
framework of the finite-element method, originally for
building–soil–foundation interaction problems (Bielak and
Christiano, 1984; Cremonini et al., 1988), and later applied
to ground motion modeling of 2D sedimentary valleys in a
half-space due to incident plane SV waves (Loukakis, 1988;

Loukakis and Bielak, 1994a,b). Similar procedures have
been presented by Clough and Penzien (1975), Kausel et al.
(1978), and Aydinoğlu (1980, 1993), under some restrictive
assumptions. Other researchers have developed alternative
two-step or hybrid procedures that make use of combinations
of different computational methods; for example, the wave-
number method and finite differences (Zahradnı́k and
Moczo, 1996); modal summation method and finite differ-
ences (Regan and Harkrider, 1989; Fäh et al., 1993, 1994);
finite-element and boundary integral methods (Mita and
Luco, 1987; Bielak et al., 1991); and wavenumber method,
finite differences, and finite elements introduced to represent
irregular geometries (Moczo et al., 1997). A review of vari-
ous hybrid methods dating back to 1980 can be found in
Moczo et al. (1997). All these methods were concerned with
2D applications. An extension of the finite-difference ap-
proach to three dimensions has been developed recently by
Oprsal and Zahradnı́k (2002).

In this set of two articles we extend the modular two-
step procedure developed by Bielak and his co-workers to
3D problems. We use a finite-element formulation in which
the primary unknowns are the total wave field within the
domain that contains the localized structure and a scattered
wave field in the exterior domain. This requires that we store
the free-field displacements from the background structure
only in a single layer of elements at the interface of the two
domains in the first step; it enables us to reduce the size of
the computational domain in the second step. This method-
ology, which we call the domain reduction method (DRM),
is capable of efficiently modeling 3D wave fields for an ar-
bitrary earthquake source in highly heterogeneous geologi-
cal systems with large localized impedance contrasts and
arbitrary shapes. To validate this procedure, in a companion
article (Yoshimura et al., 2003) we consider a flat-layered
system for which a solution can be obtained readily by eval-
uating the corresponding Green’s functions (Hisada, 1994,
1995) and illustrate its applicability to more general prob-
lems with two examples, one involving an idealized basin
and the other, a hill. To verify the two-step procedure with
a problem for which the finite-element method is used in
both steps, we model ground motion in a small region of the
Los Angeles Basin, using both the two-step DRM, and the
traditional approach in which the computational domain
contains both the source and the geological region of inter-
est. Whereas the methodology is applicable to elastic, an-
elastic, and inelastic problems, only the elastic case is con-
sidered explicitly in this set of articles for clarity of
presentation. In the concluding remarks, however, we dis-
cuss briefly the extension to the more general situations. It
will be seen that the use of the DRM can be advantageous
even in situations in which the causative fault is not far from
the region of interest.

Formulation of Domain Reduction Method

We treat the problem of a semi-infinite seismic region
that contains localized geological features such as sedimen-
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Figure 2. Truncated seismic region. (a) Outer boundary C� restricts computations
to a finite domain; fictitious interface C divides region into two subdomains: X�, which
includes the seismic source, represented by nodal forces Pe, and X, which contains the
localized geological features. (b) Regions partitioned explicitly into two substructures
across interface C; Pb are nodal forces transmitted from X� onto X; �Pb are corre-
sponding reactions from X onto X�; nodal displacements ub are required to be contin-
uous across C.

tary valleys and ridges as well as seismically active faults,
as shown in Figure 1, under earthquake excitation. The ge-
ometry is arbitrary; the material is linearly elastic, and the
earthquake excitation is prescribed as a kinematic source
along a predetermined fault.

Because the causative fault can be far from the geolog-
ical features, we wish to define a new problem in which the
excitation is brought closer to the region of interest. Such
transfer, of course, needs to be performed in a way that the
resulting ground motion within the region of interest is iden-
tical with that due to the original source. To fix ideas, sup-
pose the new excitation is to be specified on the fictitious
surface C shown in Figure 2a. This interface divides the
seismic region into two parts: X, which contains the geo-
logical features of interest, and X�, the semi-infinite exterior
subdomain, which includes the fault. We will determine the
appropriate expressions for the equivalent excitation using a
finite-element formulation. First, the original semi-infinite
region needs to be truncated for computational reasons. This
is indicated in Figure 2 by the inclusion of the outer bound-
ary C�. We assume, for the time being, that it is far enough
from the fault that no waves reflected from C� reach X
within the time under consideration. This assumption will
be removed later.

Let the vector field of nodal displacements in the interior
domain X, the exterior domain X�, and the boundary be-
tween them, C, be denoted, respectively, by ui (interior), ue

(exterior), and ub (boundary), as shown in Figure 2a. The
seismic excitation is prescribed as a kinematic source, de-
fined by the jump of the tangential displacements across the
fault; the normal displacements and tractions remain contin-
uous. This excitation can be equivalently specified by means
of body forces (e.g., Aki and Richards, 1980). With this
representation, a standard application of Galerkin’s ideas
with finite-element spatial discretization yields a set of nodal

forces, Pe, which act in the vicinity of the fault (e.g., Bao,
1998).

Rather than analyzing simultaneously the entire domain,
which includes both the fault and the localized structure, we
would like to focus on the response of a smaller region re-
stricted to a neighborhood of the local structure. To this end,
we partition the total domain into two separate subdomains
as depicted in Figure 2b. One contains the fault and the other
the localized geological feature. The displacements ub are
continuous across C, and Pb are the nodal forces transmitted
by X� onto X.

The ground motion within the entire computational do-
main is governed by Navier’s equations of elastodynamics.
When these equations are discretized spatially by finite ele-
ments in X and X�, they can be expressed in partitioned
form as:

X X X XM M ü K K u 0ii ib i ii ib i� � , in X (1)X X X X� � � � � � � � � �M M ü K K u Pbi bb b bi bb b b

and

� �X XM M übb be b
� �X X� � � �M M üeb ee e

� �X XK K u �Pbb be b b �
� �� � , in X (2)X X� � � � � �K K u Peb ee e e

In these equations, the matrices M and K denote mass and
stiffness matrices, the subscripts i, e, and b refer to nodes in
either the interior or the exterior domain or on their common
boundary, and the superscripts X and X� refer to the do-
mains over which the various matrices are defined.

The traditional form of the equation of motion for the
total domain is obtained by adding (1) and (2):
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Figure 3. Auxiliary seismic region. Localized geological features of actual problem
in X have been replaced by a simpler background structure over domain X0. (a) Entire
region; (b) region partitioned into two substructures.

X XM M 0 üii ib i
� �X X X XM M � M M übi bb bb be b

� �� � � �X X0 M M üeb ee e

X XK K 0 u 0ii ib i
� �X X X X� K K � K K u � 0 (3)bi bb bb be b

� �� � � � � �X X0 K K u Peb ee e e

Now, to transfer the seismic excitation from the fault to C,
we consider an auxiliary problem in which the exterior re-
gion and the material therein, as well as the causative fault,
are identical with those of the original problem. The interior
domain, now denoted as X0, is, however, a simpler, back-
ground structure, that does not include the localized geolog-
ical features. This is illustrated in Figure 3a. X0 is chosen
such that the new problem defined over the total domain X0

� X� is easier to solve than the original problem. We denote
by the corresponding nodal displace-0 0 0 0u , u , u , and Pi b e b

ments and the interface forces, as shown in Figure 3b. The
subscripts i, b, and e, have the same meaning as before. After
spatial discretization, the equations of motion in X� for the
auxiliary problem can be written as:

� � � �X X 0 X X 0 0M M ü K K u �Pbb be b bb be b b
� � � �� � (4)X X 0 X X 0� � � � � � � � � �M M ü K K u Peb ee e eb ee e e

The partitioned mass and stiffness matrices, as well as Pe,
are the same as in (2) because the material properties in X�

and the earthquake source are identical in both cases.
From the second equation in (4), we can now express

the nodal forces Pe in terms of the free field, as follows:

� � � �X 0 X 0 X 0 X 0P � M ü � M ü � K u � K u (5)e eb b ee e eb b ee e

Then, by substituting (5) into (3), we can solve for the
displacements ui, ub, and ue for the complete domain. This
formulation by itself, however, offers no advantage over
the traditional approach because (5) includes the terms

, which require that the free field be
� �X 0 X 0 0M ü and K u uee e ee e e

stored throughout the domain X�. This entails an undue
computational effort.

To simplify the analysis, we use a transformation of
variables, by which we express the total displacement ue as
the sum of the free field due to the background structure and
the residual field due to the localized geological feature:

0u � u � w (6)e e e

That is, the residual field we is the relative displacement field
with respect to the reference free field .0ue

Then, substituting (6) into (3), and writing the terms that
contain the free field on the right side, results in:

X XM M 0 üii ib i
� �X X X XM M � M M übi bb bb be b

� �� � � �X X0 M M ẅeb ee e

X XK K 0 uii ib i
� �X X X X� K K � K K u (7)bi bb bb be b

� �� � � �X X0 K K web ee e

0
� �X 0 X 0� �M ü � K ube e be e

� �� �X 0 X 0P � M ü � K ue ee e ee e

Finally, after substituting for Pe from (5) into (7), we obtain
the desired equation:

X XM M 0 üii ib i
� �X X X XM M � M M übi bb bb be b

� �� � � �X X0 M M ẅeb ee e

X XK K 0 uii ib i
� �X X X X� K K � K K u (8)bi bb bb be b

� �� � � �X X0 K K web ee e

0
� �X 0 X 0� �M ü � K ube e be e

� �� �X 0 X 0M ü � K ueb b eb b
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Figure 4. Seismic region with two neighboring
surfaces C and Ce on which effective nodal forces Peff

defined by equation (9) are to be applied. These forces
are equivalent to and replace the original seismic
forces Pe, which act in the vicinity of the causative
fault.

The mass matrix and stiffness matrix in the left hand side of
(8) are identical with those of (3). However, the seismic
forces Pe on the fault have been replaced by the effective
nodal forces Peff, given by:

effP 0i
� �eff eff X 0 X 0P � P � �M ü � K u (9)b be e be e

� �� � � �eff X 0 X 0P M ü � K ue eb b eb b

These forces have the key property that they involve only
the submatrices Mbe, Kbe, Meb, and Keb, which vanish every-
where except in a single layer of finite elements in X� ad-
jacent to C. This small domain lies between C and its adja-
cent surface Ce, as shown in Figure 4. Therefore, the forces
Peff act exclusively within that layer. Also, the only wave
field needed to determine Peff is that obtained from the aux-
iliary problem at the nodes that lie on C, Ce, and between
these surfaces. This localization of the equivalent seismic
forces around the geologic feature is the key advantage of
the transformation (6).

Another important consequence of (9) is that all the
waves in the exterior region X� will be outgoing. This sug-
gests that for solving (8), the size of the region X� can be
drastically reduced if one is interested only in the ground
motion near the localized features, provided suitable absorb-
ing boundaries are used to limit the occurrence of spurious
waves. Because of this attractive feature, we name our
method Domain Reduction Method (DRM). To emphasize
this reduction in size, we will denote the reduced exterior
region by � and its corresponding outer boundary by �.ˆ ˆX C
These results were derived originally in the context of a half-
space and plane wave excitation in a slightly different form
(Bielak and Christiano, 1984; Loukakis, 1988; Loukakis and
Bielak, 1994a). The present derivation is more rigorous and
concise, and it incorporates explicitly the effect of an ex-
tended source on a finite fault. A procedure similar to that
in Loukakis (1988) was developed subsequently by Aydi-
nŏglu (1993), in the context of soil–structure interaction
without explicit treatment of the earthquake source. Instead
of using a finite-element formulation throughout as in Lou-
kakis (1988) and Loukakis and Bielak (1994a), Aydinŏglu
(1993) used a boundary integral representation for the trac-
tions at the interface between the interior and exterior do-
mains; to make the equations local at the interface, the trac-
tion was approximated in the form of a mass-dashpot-spring,
and the material outside the interface C was excluded from
the computations. It is not clear that this simplification will
lead to acceptable approximations. In addition, contrary to
our formulation, in which the effective forces depend only
on the properties of the material within the region exterior
to X, the effective forces are defined on a layer within the
interior region. This could pose some difficulty if one is
interested in considering interior regions that behave nonlin-
early, as discussed in the next section. Similar results were
derived also by Zahradnı́k and Moczo (1996) for the finite
difference method in two dimensions using a rectangular

excitation box, and an algorithm similar to that of Alterman
and Karal (1968) to do the coupling.

Discussion and Concluding Remarks

The results described in the previous paragraphs can be
summarized as a two-step procedure for analyzing the earth-
quake response of localized geological features, as follows.
In step I, as shown in Figure 5a, one starts with a background
geological model that is defined over the domains X� and
X0, which include the original earthquake source, and that
defines the boundary C of what will be the region of interest
in step II. Then one calculates the free-field ground motion

and stores it at all the nodes on the adjacent sur-0 0u and ub e

faces C and Ce as well as at any interior nodes within the
finite element layer that lies between them. Suitable absorb-
ing boundary conditions on C�, such as those proposed by
Clayton and Engquist (1977) and Stacey (1988), must be
used to keep spurious wave reflections within acceptable
limits. Spurious reflections from the absorbing boundaries
are generally unavoidable in practice, and can lead to inac-
curacies in the numerical results.

If desired, any appropriate method can be used in step
I to determine these wave fields in place of the finite-element
method. The second step is performed on a reduced region
X � �, which contains the geological features of interest,X̂
but not the causative fault, as shown in Figure 5b. The ef-
fective seismic forces Peff are evaluated first, from (9), using

as input. Once these forces have been established,0 0u and ub e

the total wave fields ui and ub, and the residual wave field
we, defined respectively over X, C, and �, are obtained byX̂
solving (8). Actually, this equation must be modified slightly
to incorporate the absorbing boundary conditions on �.Ĉ
The complete solution ue within the domain � can be eval-X̂
uated simply as .0u � w � ue e e

It is important to emphasize that the DRM is exact to
within finite element spatial and time discretization errors.
In our implementation we have used piecewise linear finite
elements in space, and second-order central differences in
time. Thus, our results are second-order accurate in space
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Figure 5. Summary of two-step DRM. (a) Step I
defines the auxiliary problem over background geo-
logical model. Resulting nodal displacements within
C, Ce, and the region between them are used to eval-
uate effective seismic forces Peff required for step II.
(b) Step II, defined over reduced region made up of
X and � (a truncated portion of X�). The effectiveX̂
seismic forces Peff are applied within C and Ce. The
unknowns are the total displacement fields ui in X and
ub on C, and the residual displacements we in �.X̂

and time. The main computational efficiency is gained from
the use of the finite-element method, which allows one to
tailor the mesh size to the local wavelength of the propa-
gating wave, and to the reduction of the overall computa-
tional domain in the second step, which might be quite dra-
matic if the source is far, the material within the region of
interest is nonlinear, or repeated solutions with minor
changes in the parameters are required, as in inverse prob-
lems. With the goal of increasing the computational effi-
ciency of 3D simulations, other authors have developed
powerful memory optimization methods, especially in the
context of the finite-difference method, to be able to deal
with more realistic material properties and frequencies closer
to those of engineering interest. In particular, Moczo et al.
(1999) use a lossy compression scheme based on a discrete
wavelet transform to optimize RAM and disk storage re-
quirements. Combining the compression scheme with the
memory optimization of Graves (1996) and the memory
variable economization of Day (1998) and Day and Bradley
(2001), Moczo et al. (2000, 2001) in some cases achieve a
total disk plus RAM storage reduction approaching or ex-
ceeding an order of magnitude. Such optimization tech-

niques could be applied also to the DRM to attain further
storage reductions.

It should also be emphasized that the strict validity of
our two-step methodology hinges on the linearity of the ma-
terial outside the region of interest X and on the requirement
that the material properties in the exterior region be the same
for the auxiliary problem as for the original problem. The
material within X, on the other hand, can be arbitrary. Notice
that its properties do not enter into the computation of Peff.
In fact, the two-step procedure we just described would re-
main valid even if the material in X were nonlinear. All that
would change in the formulation are the stiffness terms in
(3) and (7) pertaining to the interior domain, which would
then depend on the solution. More generally, the second term
in (1) and in subsequent equations would be a nonlinear
function of ui and ub, which would depend on the material
constitutive equations. Another assumption in our derivation
is that the material is nondissipative. Clearly, adding linear
dissipation would not change the essence of the procedure,
but merely modify the particular form of the equations. For
instance, the addition of viscous damping would result in
added terms proportional to velocity in the equations (Lou-
kakis, 1988; Loukakis and Bielak, 1994b). More generally,
linear viscoelastic behavior would, rigorously, introduce
convolutions into the semidiscretized formulation. Such
convolutions, however, can be avoided if one approximates
the viscoelastic dependence by a linear combination of mul-
tiple relaxation mechanisms that can be expressed in differ-
ential form with the aid of auxiliary memory variables (e.g.,
Day and Minster, 1984; Emmerich and Korn, 1987; Car-
cione et al. 1988; Moczo et al., 1997). One important draw-
back encountered originally with these methods was the
added computational and storage cost associated with the
auxiliary memory variables. This difficulty has been par-
tially removed by the coarse-graining methodology devel-
oped by Day (1998), in which only one individual relation
mechanism per node produces highly accurate results.
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