
651

Bulletin of the Seismological Society of America, 91, 4, pp. 651–666, August 2001

A Theoretical Omega-Square Model Considering Spatial Variation in Slip

and Rupture Velocity. Part 2: Case for a Two-Dimensional Source Model

by Yoshiaki Hisada

Abstract The theoretical basis of the x-squared model and the characteristics of
near-source broadband strong ground motions are investigated using a 2D source
model with spatial variations in slip and rupture velocity. This is an extension of a
study by Hisada (2000a), who used 1D source models for the same purpose. First,
Hisada’s slip-velocity function (2000a) is modified by superposing scalene triangles
to construct Kostrov-type slip-velocity functions with arbitrary combinations for the
source-controlled f max and the slip duration. Then, it is confirmed that the Fourier
amplitudes of these slip velocities fall off as the inverse of x at frequencies lower
than f max (Hisada, 2000a). Next, the effects of 2D spatial distributions of slip and
rupture time on the source spectra are investigated. In order to construct a realistic
slip distribution, the hybrid slip model is proposed, which is the combination of the
asperity model at lower wavenumbers and the k-squared model (Herrero and Bernard,
1994) at higher wavenumbers. The source spectra of the proposed 2D models, which
have the k-squared distribution for slip and rupture time, fall off as the inverse of x,
when the slip is instantaneous. This result also agrees with Hisada (2000a). Therefore,
the x-inverse-squared model, which consists of the combination of the Kostrov-type
slip velocity proposed here and the k-squared distributions for both slip and rupture
time, is not only consistent with the empirical x-squared model, but also provides
the theoretical basis for constructing realistic 2D source models at broadband fre-
quencies. In addition, it is confirmed that the proposed source model successfully
simulates most of the well-known characteristics of the near-fault strong ground
motions at broadband frequencies, that is, permanent offsets in displacements, long-
period pulses in velocities, and complex randomness in accelerations. The near-
source directivity effects are also confirmed; the fault-normal components are dom-
inant over the fault-parallel components, especially at the forward rupture direction.
However, the ratio between the fault-normal and fault-parallel components is roughly
independent of frequency, which is contradictory to empirical models. This suggests
that a 3D faulting model is necessary to represent more realistic near-source strong
motions at broadband frequencies.

Introduction

Hisada (2000a) proposed the x-inverse-squared model
by modifying the k-squared model of Herrero and Bernard
(1994) and Bernard et al. (1996) to construct x-squared
source models (Aki, 1967, 1972). The k-squared model is
based on the three assumptions that (1) the spatial wave-
number spectrum of the slip distribution falls off as the in-
verse of the wavenumber squared (k-squared), (2) the Fou-
rier amplitudes of the slip velocity are independent of x at
high frequencies, and (3) the rupture velocity is constant.

Hisada (2000a) modified the last two assumptions. First,
as a more realistic slip velocity, a Kostrov-type slip velocity
model (Kostrov, 1964; Nakamura and Miyatake, 2000),

which has a sharp rise and a relatively smooth decay, was
proposed by superposing isosceles triangles with different
durations (I used the term equilateral triangles in Hisada
(2000a) by mistake). After checking the Fourier amplitudes
of various slip models, Hisada (2000a) found that (1) this
model had two corner frequencies, the first (f 1) correspond-
ing to the total slip duration (roughly the reciprocal of twice
the total duration) and the second to the source-controlled
f max (roughly the reciprocal of the minimum duration among
triangles), and (2) the Fourier amplitude of the slip velocity
fell off as the inverse of x between f1 and fmax.

Second, in order to investigate the effects of variable
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Figure 1. Geometry of a 2D source model and the
coordination system, together with an observation
point.

rupture velocity on source spectra, Hisada (2000a) intro-
duced the incoherent rupture time (Dtr), namely, the differ-
ence between the actual rupture time and the coherent
rupture time. Using 1D unilateral source models, Hisada
(2000a) found that (1) the k-squared distribution for Dtr was
the most plausible among k-inversed, k-squared, and k-cubed
distributions, and (2) the source spectra fell off as the inverse
of x when combining those models with the instantaneous
slip and the k-squared slip distribution.

Finally, Hisada (2000a) proposed the x-inverse-squared
model, which consists of the combination of the two x-
inverse models, the slip velocity proposed previously and
the k-squared spatial distributions in slip and Dtr, and con-
firmed that it was consistent with the empirical x-squared
model.

In this article, I improve my previous model (Hisada,
2000a) using 2D source models and more flexible slip-
velocity functions. First, I briefly introduce the formulation
of the source spectra using 2D fault models. Second, I gen-
eralize Hisada’s slip-velocity model by superimposing sca-
lene triangles, and I check its Fourier amplitude. I introduce
empirical relations to find appropriate relations among the
parameters for constructing the slip velocities. Third, I in-
vestigate the effects of the spatial variation of slip and rup-
ture time on the source spectra using 2D source models.
Fourth, I simulate broadband strong motions near a fault to
check waveforms (accelerations, velocities, and displace-
ments) and, especially, the directivity effects. The main ef-
fect of the rupture directivity is the increase of the long-
period ground motion in the direction normal to the fault
plane (e.g., Aki, 1968). However, empirical models show
this effect disappears at intermediate to high frequencies
(e.g., Somerville et al., 1995). Thus, it is interesting to see
whether the proposed source model explains this phenome-
non or not. Finally, I discuss the validity and the merits and
demerits of the x-inverse-squared model.

Formulation of 2D Source Models
and Source Spectra

The displacements (Ui) at an observation station (Y)
from a source model can be written as follows using a 2D
source model (e.g., Aki and Richards, 1980),

W L

U (Y; x) � {lD(e ni k j� �
0 0

*� e n )U •exp(ix • t )}dx dx , (1)j k ik,j r 1 2

where Y is an observation point, x is the circular frequency,
W and L are the width and length of the fault, respectively,
l is the rigidity ( ), D is the slip distribution, ek and� V /q� S

nj are the slip- and fault-normal vectors, respectively, *Uik,j

is the derivative of Green’s function along the jth direction,
and tr is the rupture time (see Fig. 1). Following Hisada

(2000a), the far-field displacements in a homogeneous full-
space can be simplified as follows:

RiU (Y; x) � M (x), (2)i 034pqrc

where the subscript i denotes the ith component in the spher-
ical coordinate system, and Ri is the radiation pattern for the
ith component. The variable c is the medium velocity (VP

for the radial and VS for the transverse and vertical direc-
tions), q is the density, and r is the distance from the rupture
front (x1, x2) to Y. M0 in equation (2) is the source spectrum
and is expressed as

W L

M (x) � l D(x , x )F (x , x ; x)0 1 2 V 1 2� �
0 0 (3)

exp{ix(t � t )}dx dx ,c r 1 2

where FV is the Fourier transform of the slip-velocity func-
tion, whose integration corresponds to the unit dislocation,
and tc is the arrival time of the seismic waves from the rup-
ture front to the observation point.

The arrival time and the rupture time are given as

r
t (x , x ) �c 1 2 c

r � x sin h cos u � x •cos h0 1 2� (x , x K r ),1 2 0c
(4)

and
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rSt (x , x ) � � Dt (x , x ), (5)r 1 2 r 1 2Vr

with 2 2r (x , x ) � (x � x ) � (x � x ) , (6)�S 1 2 1 S1 2 S2

where r0 is the distance from the origin of the fault plane to
Y, h and u are the location of Y in spherical coordinates, V¢r

is the constant rupture velocity, and xS1 and xS2 are the lo-
cations of the hypocenter (the starting point of the rupture).
Following Hisada (2000a), I divide the rupture time tr into
the coherent rupture time (rs/V¢r) and the incoherent rupture
time (Dtr). I introduce Dtr to represent the fluctuations at
rupture front due to the variable rupture velocity.

Substituting equations (4), (5), and (6) into equation (3),
the following source spectrum is obtained:

W Lr0M (x) � l exp ix D(x , x )F (x , x ; x)0 1 2 V 1 2� � � �c 0 0

rSexp ix � Dt dx dx , (7)r 1 2� � ��VrCd

where, Cd is the directivity coefficient of the 2D source
model,

1
C � . (8)d ¢ x xVr 1 21 � cos h � sin h cos u� �c r rS S

When h � 90�, equation (8) becomes the directivity coef-
ficient of the 1D source model (Ben-Menahem, 1961).

As seen in (7), the source spectra are controlled by the
spatial distributions of the static slip, the slip-velocity func-
tion, and the rupture time. In the following, I first check the
Fourier amplitudes of the slip velocity function and then the
effects of the spatial variations of the slip and the rupture
time on the source spectra.

Fourier Amplitudes of Slip-Velocity Functions

Following Hisada (2000a), I express the slip-velocity
function (Fv) as a function with a sharp rise and a relatively
smooth decay, which can be obtained by superimposing tri-
angles with different durations. The combination of triangles
from short to long durations guarantees broadband fre-
quency contents. While Hisada (2000a) used isosceles tri-
angles as element triangles for the simplicity, I will gener-
alize the formulation using scalene triangles to utilize
arbitrary combinations of slip durations and f max.

In the time domain, the slip-velocity function superpos-
ing scalene triangles can be written as follows (see Fig. 2):

NV1 j�1 ˙F (x , x ; t) � Ar • f (t)V 1 2 � j
i�1A (9)

NV
j�1with A � Ar ,�

j�1

where NV is the total number of triangles, and Ar is the ratio
of the area of the j � 1th triangle with respect to the area
of the jth triangle (i.e., Ar � Aj�1/Aj).

In equation (9), ḟj is the scalene triangle of the jth ele-
ment,

A • t, (0 � t � s )1j 1j

ḟ (t) � A • (s � t), (s � t � s ), (10)j 2j j 1j j�
0, (s � t)j

with A � V /s , A � V /s and V � 2/s , (11)1j j 1j 2j j 2j j j

where A1j, A2j, and Vj are the absolute values of the maxi-
mum and minimum accelerations and maximum velocity of
the jth triangle, respectively. The variables s1j, s2j, and sj are
the first-half, the second-half, and the total durations of the
jth triangle, respectively. They are defined as follows:

sij�1s � s •Tr , s � , andj min 1j Tr (12)
s � s � s , (j � 1, 2, 3, . . . , N )2j j 1j V

N �1V1 Tr
with s � s � , and s � s � (13)min 1 max NVf fmax max

where Tr is the ratio of sj�1 with respect to sj and is also
the ratio of sj to s1j (i.e., Tr � sj�1/sj � sj/s1j; see Fig. 2).
The reciprocal of the minimum duration (s1) corresponds to
the source-controlled f max (Hisada, 2000a), and smax is the
total duration of the slip. For the case of the isosceles tri-
angle, Tr is 2 (see equation 19 of Hisada [2000a]).

The slip displacement and acceleration are obtained by
replacing ḟj in equation (9) by

2t , (0 � t � s )s s 1jj 1j

f (t) � (s � t � s ), (14)s s � (t�s )(s �s�t)j 1j j1j 2j 1j 2j j ,� s sj 2j (s � t)j1,

for displacement, and

A , (0 � t � s )1j 1j

f̈ (t) � �A , (s � t � s ) (15)j 2j 1j j�
0 (s � t)j

for acceleration.
The Fourier transform of equation (9) can be obtained

analytically:



654 Y. Hisada

Figure 2. The slip-velocity function (black line) and the corresponding slip displacement
(thick gray line). The velocity function consists of several isosceles triangles with various
durations (six triangles in thin lines in this case).

NV1 j�1 ˙F (x , x ; x) � Ar • f (x), (16)V 1 2 � j
j�1A

where

exp(iv ) sin v sin v1j 1j 2jḟ (x) � i � exp(iv ) , (17)j j� �v v vj 1j 2j

x •s x •s x •sj 1j 2jwith v � , v � , v � , (18)j 1j 2j2 2 2

and i is the imaginary number.
Although the parameters f max (�1/s1), Ar, Tr, and NV

in the slip-velocity function can be arbitrary, I roughly es-
timate their relations for a given magnitude by considering
empirical relations and then check the Fourier amplitudes of
the plausible slip velocities.

First, according to Sato (1979), who compiled the
source parameters of Japanese earthquakes, the following
empirical relations were obtained between magnitude, M,
and fault length, L, and between M and average slip, D̄:

log L(km) � 0.5M � 1.88, (20)10

¯log D(cm) � 0.5M � 1.4 . (21)10

In addition, Geller (1976) obtained the following empirical
relation between fault length and slip duration (rise time).

s (sec) � 0.0726L (km) (22)max

On the other hand, Somerville et al. (1999) derived the
similar relations using more recent source inversion results,
as follows:

�7 1/3D̄(cm) � 1.56 •10 •M , (23)0

�9 1/3s (sec) � 2.03 •10 •M (24)max 0

where M0 is the seismic moment. Therefore, when we com-
bine the previous equations with a magnitude–seismic mo-
ment relation, such as that of Hanks and Kanamori (1979),

2M � log M � 10.7, (25)10 03

we obtain the other set of empirical relations among mag-
nitude, the average slip, and the slip duration.

The left columns in Table 1 show relations for various
M values vs. the corresponding combinations of smax and D̄
using equations (20)–(22) by Sato and Geller and equations
(23)–(25) by Somerville et al. (1999). As for f max, I tested
three cases: 10, 5, and 1 Hz. Although D̄ values are com-
parable between the relations by Sato (1979) and Somerville
et al. (1999), smax values obtained by Geller (1976) are about
two times larger than those obtained by Somerville et al.
(1999). This is probably caused by the different datasets and
frequency bands between the two relations; especially
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Table 1
Maximum Slip Velocities and Accelerations Using Various Magnitudes (M), fmax Values, and Ar Values

fmax � 10 Hz and Tr � 1.77

Sato et al. Somerville et al. Ar � 1.2 Ar � 1.4 Ar � 1.6 Ar � 1.77 Ar � 2

M s (sec) D(cm) s (sec) D(cm) Nv Vmax Amax Vmax Amax Vmax Amax Vmax Amax Vmax Amax

4.0 0.1 4.0 0.05 3.5 1 78 1416 78 1416 78 1416 78 1416 78 1416
4.5 0.2 7.1 0.08 6.2 2 87 1580 83 1515 80 1460 78 1420 76 1373
5.0 0.3 13 0.14 11 3 106 1934 96 1738 88 1580 82 1469 75 1345
5.5 0.6 22 0.26 20 4 127 2301 105 1903 89 1603 79 1404 68 1197
6.0 1.0 40 0.45 35 5 168 3059 127 2297 99 1767 81 1443 67 1129
6.5 1.7 71 0.81 62 6 225 4090 153 2761 107 1919 82 1447 67 1029
7.0 3.1 126 1.4 110 7 308 5591 187 3369 118 2097 82 1451 66 929
7.5 5.4 224 2.6 196 8 429 7786 231 4161 129 2307 82 1457 66 836
8.0 9.6 398 4.5 349 9 604 10980 288 5179 443 2545 83 1463 66 749

fmax � 5 Hz and Tr � 1.74

Sato et al. Somerville et al. Ar � 1.2 Ar � 1.4 Ar � 1.6 Ar � 1.74 Ar � 2

M s (sec) D(cm) s (sec) D(cm) Nv Vmax Amax Vmax Amax Vmax Amax Vmax Amax Vmax Amax

4.5 0.2 7.1 0.08 6.2 1 71 618 71 618 71 618 71 618 71 618
5.0 0.3 13 0.14 11 2 82 718 79 689 76 665 75 650 72 626
5.5 0.6 22 0.26 20 3 94 817 85 736 77 671 73 632 66 573
6.0 1.1 40 0.45 35 4 120 1047 100 870 84 735 76 661 64 553
6.5 1.8 71 0.81 62 5 157 1362 118 1028 91 795 77 674 63 513
7.0 3.2 126 1.4 110 6 209 1822 142 1237 99 865 79 687 64 470
7.5 5.6 224 2.6 196 7 287 2496 174 1513 109 949 81 702 65 427
8.0 9.7 398 4.5 349 8 399 3475 215 1869 120 1044 82 717 66 386

fmax � 1 Hz and Tr � 1.76

Sato et al. Somerville et al. Ar � 1.2 Ar � 1.4 Ar � 1.6 Ar � 1.76 Ar � 2

M s (sec) D(cm) s (sec) D(cm) Nv Vmax Amax Vmax Amax Vmax Amax Vmax Amax Vmax Amax

6.0 1.0 40 0.45 35 1 80 �185 80 �185 80 �185 80 �185 80 �185
6.5 1.8 71 0.81 62 2 89 158 84 148 86 151 81 142 78 137
7.0 3.1 126 1.4 110 3 106 187 91 161 96 169 81 143 74 131
7.5 5.5 224 2.6 196 4 133 234 101 178 110 194 82 145 70 123
8.0 9.6 398 4.5 349 5 173 305 114 201 130 229 83 146 68 113

The average slip (D) and the slip duration (s) are empirically derived by Sato (1979) and Geller (1976). As a reference, the more recent results by
Somerville et al. (1999) are also shown. The lightly shaded areas indicate the maximum values within realistic ranges. In particular, the bold values in the
heavily shaded areas indicate values used to calculate Fourier amplitudes of the slip accelerations, as shown in Figure 4.

Geller’s relations were based on mainly longer-period seis-
mograms from large-scale offshore earthquakes, whereas
those of Somerville et al. (1999) were based on mainly
shorter-period strong motions from small- to medium-scale
inland earthquakes. As shown in Figures 2 and 3, the slip-
velocity functions used in this study are broadband; the be-
ginnings of the slips excite the high-frequency waves, and
the subsequent slips are coda with decreasing amplitudes,
which contribute only to low-frequency waves. Therefore, I
use the relations by Sato (1979) and Geller (1976) as slip-
velocity functions in this study. In this case, the values of
Tr are similar from 1.74 to 1.77 among the three f max values,
as shown in Table 1.

The right columns of Table 1 show the maximum (or
minimum) values of slip velocities and accelerations. As for
Ar, several values between 1.2 and 2 are tested. The shaded
areas in Table 1 indicate the maximum accelerations and
velocities within realistic ranges, that is, about 50 to 200
(cm/sec) for peak velocities, and 500 to 2000 (gal) for peak

accelerations. The values of 200 (cm/sec) and 2000 (gal) for
peak velocities and accelerations, respectively, may seem
too high for using the average slips. However, it should be
noted that the durations for the peak values are extremely
short, that is, instantaneous for the velocities and s11(�0.5/
f max) for the accelerations. In addition, they are raw values
without material damping, scattering, and frequency-band
limits.

Figure 3a and b shows the slip velocities and the Fourier
amplitudes of the corresponding slip accelerations. Only re-
sults for f max � 5 Hz are shown because the results for all
the other cases are similar. The slip velocities are Kostrov-
type functions (namely, a sharp rise and a smooth decay) for
Tr � Ar, scalene triangles for Tr � Ar (�1.74), and smooth
functions without sharp peaks for Tr � Ar. Accordingly, the
Fourier amplitudes for the larger Ar show the smaller am-
plitudes at high frequencies. Similar to Hisada (2000a), the
Fourier amplitudes have two corner frequencies; the first is
nearly equal to the reciprocal of twice of the slip duration,
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Figure 3. (a) The slip velocities and (b) the Fourier amplitudes of the corresponding
slip accelerations for the case of fmax � 5 Hz and Tr � 1.74.
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Figure 4. The Fourier amplitudes of the slip accelerations of various magnitudes
using the combinations of the plausible peak velocities and accelerations, whose pa-
rameters are shown as the bold values in Table 1. Note that the velocity spectra fall
off as the inverse of x between f1 and fmax.

f � 1/2s . (26)1 max

Thus, f 1 � 1.7, 0.45, 0.16, and 0.052 Hz for M � 5, 6, 7,
and 8, respectively. The second corner frequency is f max

(�5 Hz).
Figure 4 shows the Fourier amplitudes of the slip ac-

celerations of various magnitudes using the combinations of
the plausible peak velocities and accelerations, whose pa-
rameters are shown as the bold values in Table 1. Note that
their amplitudes are about flat between f 1 and f max in all
cases, meaning the Fourier amplitudes of slip velocities fall
off as the inverse of x (i.e., a x-inversed model). This con-
clusion is the same as in Hisada (2000a).

In this article, I assume that the x-inversed model of the
slip velocity is true along the whole fault plane. However,
this may be modified for some cases, especially a source
model with surface faulting. The strong-motion records near
the 1999 Chi-Chi, Taiwan, earthquake provided an excellent
opportunity to investigate the slip-velocity function at vari-
ous locations on the fault plane. In particular, it is interesting
that the strong motions near the surface rupture (i.e.,
TCU052 and TCU068) lack large high-frequency waves, as
compared with the regular strong motions in the epicentral
area. Seemingly, the shallower parts of the fault plane (say,
less than 5 km) did not excite large high-frequency waves.
To interpret these effects using the slip model proposed here,
f max is probably very low and/or Ar may be larger than Tr.
One of the advantages of the proposed model is very easy
to include these effects by using variable f max and/or Ar de-
pending on depth.

Source Spectra Considering Variable Slip
and Rupture Velocity

In order to investigate the effect of the 2D spatial vari-
ation of slip and rupture velocity on the source spectra, I
evaluate the source spectra of 2D sources by assuming tem-
porarily the instantaneous slip (Fv(x1, x2, ) � 1) in equationx̄
(7). Neglecting the term lexp(ixR0/c) in equation (7), the
source spectra can be expressed as:

W L rsS(x) � D(x , x ) exp ix � Dt dx dx . (27)1 2 r 1 2� � � � ��
0 0 VrCd

In the following, I will check the source spectra using vari-
ous types of spatial variation of slip and rupture velocity.
First, I will assume nondirectivity cases (i.e., h � u � 90�
in equation 8) and then check its effects on the source
spectra.

Source Model with Rectangular Asperities
and Constant Rupture Velocity

One of the simplest asperity model would be a slip
model consisting of rectangular subfaults with locally con-
stant slips, which is commonly used in source inversion stud-
ies. As an example, I use hereafter the inversion result of
the 1995 Hyogoken-Nanbu, Kobe, earthquake obtained by
Yoshida et al. (1996). Although this earthquake consisted of
two main faults (the Kobe- and Awaji-side faults), I use only
the Kobe-side fault for simplicity. Figure 5 shows the slip
distribution of the Kobe-side fault; the fault length and width
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Figure 5. The slip distribution of the Kobe-side
fault model by Yoshida et al. (1996). The fault length
and width are 36 and 16 km, respectively, and the
subfault size is 4 � 4 km2.

Figure 6. The rupture time distributions for (a)
model 1a and (b) model 1b. In model 1a, the integra-
tion is carried out by one point per sub-fault. Since
the rupture velocity is infinite within subfaults in this
scheme, sharp discontinuities exist among adjacent
subfaults. On the other hands, model 1b uses much
denser integration points to represent a continuous
and smooth rupture front.

are 36 and 16 km, respectively, and the subfault size is 4 �
4 km2. I will assume here that the rupture velocity is constant
( and Dtr � 0).Vr � 2.8 km/sec

To compute the source integral in equation (27), I will
use two different models. One model uses one integration
point per subfault (model 1a); this simple integration scheme
is still widely used not only in source inversion studies, but
also in strong-motion simulations. The integration can be
done as follows:

N NL W rSijS(x) � D exp ix DLDW, (28)� � ij � �
i�1 j�1 Vr

where, NL and NW are the numbers of subfaults along the
length and width (NL � 9 and NW � 4 in this model), Dij

is the slip of the (i, j) subfault, and rSij is the distance from
the hypocenter to the center of the (i, j) subfault. Figure 6a
shows the rupture time distributions for model 1a. Since the
rupture velocity is infinite within subfaults, sharp disconti-
nuities exist among adjacent subfaults in this model.

The other model uses much denser integration points to
represent a continuous rupture front (model 1b),

N N M ML W L W rSijklS(x) � D exp ix DLDW, (29)� � ij � �� � ��
i�1 j�1 k�1 l�1 Vr

where ML and MW are the numbers of the divided integration
points on subfaults, and rSijkl is the distance from the hypo-
center to the integration points. Figure 6b shows the rupture
time distributions of model 1b, where ML � MW � 40 are
used. Since the rupture velocity is constant and dense inte-
gration points are used, the rupture time is smoothly distrib-
uted in this model.

Figures 7 and 8 show the source spectra and source–
time functions of models 1a and 1b, respectively. The am-
plitudes of the spectra are multiplied by x, and thus the
constant amplitude represents a x�1 decay. The spectrum of
model 1a is roughly independent of x showing extremely
strong high-frequency amplitudes. The corresponding
source–time function (i.e., the far-field displacement) shows
unrealistically fluctuated high-frequency waveforms. On the
other hand, the spectrum of model 1b falls off as x�1. How-
ever, its source–time function shows stopping and starting
phases generated at the edges of subfaults, which also seems
unrealistic.

To summarize, both models seem far from reality; the
slip should not be discontinuously distributed as shown in
Figure 5. Therefore, one should be careful in using this type
of simple asperity models (i.e., rectangular subfaults with
locally constant slips). Next I will check source models with
more realistic and continuous slip distributions.
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Figure 7. The source spectra of model 1a (black
line) and model 1b (gray line). The amplitudes of the
spectra are multiplied by x. Therefore, the spectrum
of model 1a is roughly independent of x, whileas that
of model 1b shows a x�1 decay.

Source Model with k-Squared Slip Distribution
and Constant Rupture Velocity

I will check the source spectra of the 2D k-squared
model with a constant rupture velocity, where its spatial
wavenumber spectrum of the slip distribution falls off as the
inverse of the wavenumber squared (k-squared) (Herrero and
Bernard, 1994).

Here, I propose a hybrid k-squared slip model in order
to obtain a realistic slip distribution for the Kobe earthquake
model (Fig. 9). First, at wavenumbers lower than the Nyquist
wavenumbers of the subfault dimensions (k � 1/2DL for the
length and k � 1/2DW for the width), I use a smooth slip
distribution obtained from the source inversion result. Since
the original Kobe model has an unrealistic discontinuous slip
distribution (Fig. 9a), the slip is linearly interpolated (Fig.
9b), then smoothed out using a bicubic Spline intepolation
(Fig. 9c).

Second, at wavenumbers higher than the Nyquist wave-
numbers, I use the k-squared slip model based on the 2D

butterworth function with random phases (e.g., Somerville,
et al., 1999),

N M D̄
D(x , x ) � cos 2p1 2 � � �2 2 2n�1 m�1 1 � (m � n )�

x x1 2•m • � h cos 2p •n • � h , (30)mn n� � �L W

where n and m are the wavenumbers normalized by the fault
length and width, respectively, hmn and hn are random phases
between 0 and 2p (radians), and D̄ is the adjustable static
slip; the total sum of the final slip over the fault plane (Fig.
9d) must be the same as the sum of the original slip (Fig.
9a) to conserve the seismic moment. The variables M and N
are the maximum values for m and n, and MV¢r /L and NV¢r /
W estimate roughly the limits of resolution in frequency.

Finally, the hybrid k-squared slip model is obtained by
superposing the two models, as shown in Figure 9d. The
source spectra of this model are calculated as follows:

N N M ML W L W rSijklS(x) � D exp ix DLDW, (31)� � � � ijkl� � ��
i�1 j�1 k�1 l�1 Vr

where Dijkl is the slip at the (i,j,k,l) integration point.
The thick black line in Figure 10, as indicated by Dt �

0.0 sec, shows the source spectrum of the hybrid model as-
suming the constant rupture velocity (V¢r � 2.8 km/sec). I
generated one hundred sets of the k-squared model modi-
fying the random phases in equation (30) and show their
average values in the figure. The amplitudes of the spectrum
are multiplied by x, and thus, the spectrum of this model
falls off as the inverse of x-squared, as expected by the
original k-squared model (Herrero and Bernard, 1994).
Therefore, when I combine this slip model with the slip-
velocity model having the x�1 decay, as shown earlier, the
final source spectrum falls off as the inverse of x-cubed. The
reason for the lack of high-frequency waves should be due
to having neglected the spatial variation of the rupture ve-
locity (or the rupture time) (Hisada, 2000a).

Figure 8. The source–time functions of
(a) model 1a and (b) model 1b. Model 1a
shows extremely strong high-frequency waves,
whereas model 1b shows stopping and starting
phases generated at the edges of subfaults.
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Figure 9. The construction of the hybrid k-squared slip model for the Kobe earth-
quake: (a) the original discontinuous slip distribution by Yoshida et al. (1996); (b) the
linearly interpolated slip model; (c) the smoothed-slip model using the bicubic Spline
interpolation; and (d) the hybrid k-squared slip model, which is the combination of
model c and the k-squared model with random phases at the wavenumbers higher than
Nyquist wavenumbers of the subfault dimensions.

Figure 10. The source spectra of the hybrid
k-squared models for the cases of Dt � 0.0,
0.5, 1.0, and 2.0 sec. The amplitudes of the
spectra are multiplied by x. Therefore, the
spectrum for Dt � 0.0 (smooth rupture without
the incoherent rupture time) falls off as the x-
squared, whereas the other spectra show x�1

decays.
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Source Model with k-Squared Distributions
of Slip and Rupture Time

Here, I will check the source spectra of the hybrid k-
squared slip model with variable rupture velocities by intro-
ducing the incoherent rupture time (Dtr),

N N M ML W L W rSijklS(x) � D exp ix� � � � ijkl� � �
i�1 j�1 k�1 l�1 Vr

� Dt DLDW, (32)rijkl��	
where Dtrijkl is Dtr, at the (i, j, k, l) point.

I assume the k-squared distribution for Dtr, as discussed
in Hisada (2000a). Since I already have the k-squared dis-
tribution of the slip, I simply assume that the Dtr distribution
is reciprocally proportional to the slip distribution. The nu-
merical results using dynamic source models (i.e., Day,
1982) and the observational results (i.e., Archuleta, 1982)
have shown that spatial variations of peak slip velocity are
strongly coupled to those of rupture velocity. Generally, one
finds that the larger the slip, the larger the slip velocity. In
addition, the larger Dtr is, the slower the rupture velocity.
Therefore, the model, whose Dtr distribution is reciprocally
proportional to the slip distribution, is probably better than
the model whose Dtr distribution is proportional to the slip.
In fact, I have checked the latter cases, and have obtained
similar results.

Figure 11 shows the rupture time distributions for the
cases where the average incoherent rupture times (Dt) are
0.5, 1.0, and 2.0 sec. As compared with the model for Dt �
0 (Fig. 6b), the rupture times in Figure 11 are fluctuated
rapidly. The model with Dt � 2.0 is probably not realistic
because the rupture velocity exceeds locally VS and VP.

Figure 10 shows the source spectra using the hybrid k-
squared slip model with the rupture time distributions shown
in Figure 11. The amplitudes of the spectra are multiplied
by x. Similarly to the case for Dt � 0, I generated 100 sets
of the models for Dt by changing the random phases, and
their average spectra are shown in the figure. When Dt � 0,
all the spectra show roughly x-inverse decays. In addition,
it is seen that the larger Dt is, the larger the high-frequency
waves become. These conclusions are the same as those of
the 1D source model (Hisada, 2000a).

The Effect of the Directivity on the Source Spectra

I will check the directivity effects on the source spectra
and the corresponding source–time functions. Since I have
obtained the same conclusion for every model I tried, I will
show here only one example for the case Dt � 1.0 (sec),
whose Dtr distribution is reciprocally proportional to the hy-
brid k-squared slip model.

Figure 12a shows the source spectra for h � 90� and
u � 90� (no directivity), u � 0� (forward directivity), and
u � 180� (backward directivity), whose amplitudes are mul-
tiplied by x. As expected (e.g., Bernard et al., 1996), the

amplitude is larger for the forward model and smaller for
the backward model. Note that all the spectra show x-in-
versed decays.

Figure 12b shows the corresponding source–time func-
tions. As compared with the model of u � 90�, the forward

Figure 11. The rupture time distributions for the
cases of the average incoherent rupture times (Dt) are
(a) 0.5, (b) 1.0, and (c) 2.0 sec. I assumed that the Dtr
distribution is reciprocally proportional to the slip dis-
tribution (Fig. 9d).
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model exhibits the larger amplitude and shorter duration,
while the backward model shows smaller amplitude and
longer duration.

Strong Ground Motions near Fault and Rupture
Directivity Effects

Finally, I simulate broadband strong motions near a
fault using equation (1) and check the rupture directivity
effects using the proposed source model.

Figure 13 shows the fault model and five observation
points. The fault length and width and the slip distribution
of the hybrid k-squared model are the same as those of Fig-
ure 9d, which are originally derived from the Kobe earth-
quake. As shown in the figure, it is a right-lateral strike-slip
fault with the dip angle of 90� and the rake angle of 210�.
Its shallowest edge is located at the 4-km depth from the free
surface. The contours on the fault show the k-squared slip
distribution, and the black dot on the fault plane indicates

the starting point of rupture. The five observation points line
up at 1 km apart from the fault plane and at regular 10-km
intervals on the free surface. Point 1 corresponds to the di-
rection of the backward directivity, while points 3 to 5 cor-
respond to the forward direction. As for the slip-velocity
function, I use the parameters listed as the bold values for
M � 7 in Table 1: f max � 5 Hz, Tr � 1.74, NV � 6, and
Ar � 1.4.

As for Green’s function in equation (1), I use that of the
homogenous full-space and multiply the factor of 2 to take
into account the free surface condition. The material prop-
erties of the medium are q � 2.8 t/m3, VP � 6.0 km/sec,
VS � 3.5 km/sec, QP � 500, and QS � 250. First, I calculate
strong motions up to 5 Hz in the frequency domain and then
calculate time histories using the inverse fast Fourier trans-
form algorithm and the low-pass filter with a flat range from
0 to 4 Hz.

Figures 14a and b show the simulated accelerations, ve-
locities, and displacements for the fault-normal and fault-

Figure 12. (a) The source spectra for u �
90� (no directivity), 0� (forward directivity),
and 180� (backward directivity) for the case of
Dt � 1.0 sec, and (b) the corresponding
source–time functions.

Figure 13. The fault model and five obser-
vation points for simulating near-source strong
motions. The fault length (36 km) and width
(16 km), and the slip distribution (the contours
in the figure) are the same as those of Figure
9d. The dot and arrows on the fault plane in-
dicate the hypocenter and the direction of the
right-lateral slip.



A Theoretical Omega-Square Model. Part 2: Case for a Two-Dimensional Source Model 663

parallel components, using the smooth rupture time model
(Dtr � 0) (see Fig 6b) and the k-squared rupture time model
(Dtr � 1.0 sec; see Fig. 11b), respectively. It should be noted
that the amplitude scales of the fault-normal components are
10 times larger than those of the fault-parallel components
in all the figures. This indicates strong directivity effects at
broad frequencies. The displacements in Fig. 14a and b show
similar simple waveforms: smoothed step functions for the
fault-parallel components and long-period pulses for the
fault-normal components, whose amplitudes grow in the for-
ward direction, as expected theoretically. On the other hand,
the velocities and accelerations are very different between
the two models. In particular, the accelerations in Figure 14a
show simple waveforms consisting of a couple of directivity
pulses. Each pulse corresponds to the asperity existing from
the rupture front to the corresponding observation point (see
Fig. 13). Their waveforms seem too simple to be accelera-
tions, even though the complex k-squared slip distribution
was considered. On the contrary, the accelerations in Figure
14b show complex random characteristics at high frequen-
cies, which seem much more realistic. Therefore, the k-
squared distribution of the rupture time is much more im-
portant and essential for representing realistic broadband
waveforms than the k-squared slip distribution.

Figure 15 shows the Fourier amplitudes of the acceler-
ations of the fault-parallel and -normal components and their
amplitude ratios at three observation points (1, 3, and 5).
The top three and the bottom three graphs represent the re-
sults for the smooth rupture model (Dtr � 0) and the k-
squared rupture model (Dtr � 1 sec), respectively. As ex-
pected from the previous results, the Fourier amplitudes of
the tops fall off as x-cubed at the frequencies higher than
the first corner frequency, whereas those of the bottoms
show x-squared models. All the amplitudes of the fault-
normal components are several times larger than the corre-
sponding parallel components, and their ratios increase from
the backward rupture direction (point 1) to the forward di-
rection (points 3 and 5). Interestingly, the amplitude ratios
are roughly constant at the frequencies higher than the first
corner frequency. This is contradictory to the empirical di-
rectivity models (e.g., Sommerville et al., 1995), where the
ratios decrease to 1 at higher frequencies. Undoubtedly, the
scattering path effects should be one of the reasons for this
contradiction. However, the main reason is probably due to
the limitation of the 2D fault model, whose plane is flat and
its radiation pattern, eknj � ejnk in equation (1), is indepen-
dent of frequencies and/or wavenumbers. To represent more
realistic radiation patterns and rupture directivity effects, I
probably need to incorporate an empirical frequency-
dependent radiation pattern (e.g., Pitarka et al., 2000) or to
introduce a more realistic 3D faulting model. In particular,
the 3D model should be wavenumber dependent, that is, a
nearly flat plane at longer wavenumbers and highly fluctu-
ated surface or volume at shorter wavenumbers.

Figure 14. The simulated near-source accelera-
tions, velocities, and displacements for the fault-
normal and fault-parallel components, using (a) the
smooth rupture time model (Dtr � 0; see Fig. 6b),
and (b) the k-squared rupture time model (Dtr � 1.0
sec; see Fig. 11b).
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Concerning the effects of the spatial variations on slip
and rupture time, I investigated the conventional asperity
models and the k-squared models. The conventional asperity
model, in which slips are locally constant within rectangular
subfaults, is not appropriate for simulating ground motions
because the discontinuities of slip along the subfault bound-
aries generates artificial starting and stopping phases. Thus,
I proposed the hybrid k-squared slip model (see Fig. 9),
which is the combination of the smoothed asperity model at
low wavenumbers and the k-squared slip model at high
wavenumbers. On the other hand, since it is not well known
how to distribute the incoherent rupture time (Dtr) on fault
planes, the Dtr distribution was simply assumed to be recip-
rocally proportional to the slip distribution. This led to the
same conclusion as Hisada (2000a); namely, the k-squared
distributions of slip and rupture time seem the most appro-
priate. In addition, the source spectra of these models fall
off as the inverse of x, when the slip velocity is the delta
function.

Next, I discuss the merits and demerits of the proposed
x-inverse-squared model from the practical point of simu-
lating strong ground motions. The advantage of this model
is that it provides a sound theoretical basis for constructing

Discussion

I obtained the same conclusions as Hisada (2000a) using
2D source models. The x-squared model consists of two x-
inversed spectra models; one is the slip velocity function,
and the other is the k-squared model for the spatial distri-
butions of slip and rupture time. Therefore, following Hisada
(2000a), I shall call this model the x-inverse-squared model.

Regarding the slip-velocity function, I generalized the
previous results of Hisada (2000a) by superimposing scalene
triangles to model arbitrary Kostrov-type slip velocities (Fig.
2). It was important to superimpose triangles with various
durations to guarantee broadband frequency contents.
Among various combinations of the parameters, I estimated
the plausible combinations using the empirical relations for
magnitude, average slip, and slip duration, obtaining the
same conclusion as Hisada (2000a). Namely, the Fourier am-
plitude of the slip velocity has two corner frequencies: one
is f max and the other is f 1. f max is the reciprocal of the min-
imum duration among the scalene triangles, and f 1 is nearly
equal to the reciprocal of twice the total slip duration. Fi-
nally, I confirmed that the Fourier amplitude fell off as the
inverse of x between f max and f 1 (see Fig. 4).

Figure 15. The Fourier amplitudes of accelerations (unit: m/sec) of the fault-parallel
and fault-normal components and their amplitude ratios at three observation points (1,
3, and 5). The top three and the bottom three graphs represent the results for the smooth
rupture model (Dtr � 0) and the k-squared rupture model (Dtr � 1 sec), respectively.
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the conventional x-squared model. Even though the subfault
sizes used in source inversion studies are usually fairly large,
and the corresponding resolutions are limited at longer pe-
riods (i.e., a few seconds for M 7, and several seconds for
M 8 earthquakes), I can easily extend the limit of resolutions
by assuming the self-similarity rule (i.e., the k-squared
model). Therefore, it is possible to generate realistic broad-
band strong motions including not only the long-period co-
herent waves (i.e., the permanent offset and the forward di-
rectivity pulses near faults), but also the short-period random
waves (i.e., accelerations), as demonstrated in Figure 14b.
Even some peculiar strong motions, such as the accelerations
observed in the area near the surface rupture during the 1999
Chi-Chi earthquake (i.e., TCU052 and TCU068) whose
spectra are not apparently x-squared, can be easily repro-
duced by using the slip-velocity function with a small f max

and/or a large Ar, as discussed earlier.
On the other hand, a disadvantage of this method is that

it takes a lot of computational time at higher frequencies
because very dense integration points are necessary to rep-
resent a continuous slip and rupture front. Numerical exper-
iments show that the distance between integration points
(Dd, namely, DL/ML and DW/MW in equation 32) should be
Dd � minimum wavelength/5 � 10.

Especially, denser integration points are necessary at
backward directions than forward directions to avoid artifi-
cial excitations at high frequencies. In the case of the Kobe
model presented earlier, for example, I distributed 57,600
integration points (9 � 4 subfaults multiplied by 40 � 40
points) on the relatively small fault plane (16 � 36 km2) to
calculate source spectra up to 5 Hz. Thus, it is not easy to
incorporate this source model with more realistic Green’s
function, such as those of flat-layered structures, on larger
fault planes. In addition, this model does not reproduce the
frequency-dependent rupture directivity effects, which are
empirically known. Therefore, the fault-normal components
of this model are always much larger than the parallel com-
ponents at any frequencies. However, those problems would
be easily remedied by incorporating this model with sto-
chastic source methods at high frequencies and/or empirical
frequency-dependent radiation patterns (i.e., Kamae et al.,
1998; Hisada, 2000b; Pitarka et al., 2000).

Conclusions

I proposed the x-inverse-squared model to construct the
x-squared model by considering the spatial variation in slip,
slip velocity, and rupture time on 2D fault models. For the
slip velocity, I generalized Hisada’s model (2000a) by super-
posing scalene triangles to represent Kostrov-type slip ve-
locities with arbitrary combinations of the source-controlled
f max and slip durations. Then, I obtained the same conclu-
sions of Hisada (2000a); namely, the Fourier amplitude of
this model falls off as the inverse of x between f 1 and f max.
On the other hand, for modeling the spatial variation in slip
and rupture time, I proposed a hybrid k-squared model,

whose slip distribution consisted of the smoothed asperity
model at low wavenumbers and the k-squared slip model at
high wavenumbers. In addition, the distribution of the in-
coherent rupture time (Dtr) was simply assumed to be recip-
rocally proportional to the slip distribution. This also led me
to confirm the same conclusions of Hisada (2000a); namely,
the source spectra of the hybrid k-squared models fell off as
the inverse of x, when the slip velocity was the delta func-
tion. Therefore, the x-inverse-squared model, which is the
combination of the proposed slip velocity and the hybrid k-
squared distributions in slip and Dtr, provides the theoreti-
cally solid basis of the x-squared model.

In addition, this model successfully simulated most of
the well-known characteristics of the near-fault strong
ground motions at broadband frequencies: the permanent
offset in displacements, the long-period directivity pulses in
velocities, and the complex randomness in accelerations. In
particular, I found that the k-squared distribution of the rup-
ture time is much more important and essential not only for
exciting high-frequency waves, but also for generating re-
alistic randomness in acceleration waveforms. On one hand,
this model did not reproduce the frequency-dependent rup-
ture directivity effects (i.e., the fault-normal components are
dominant over the parallel components only at longer pe-
riods). This is probably caused by the flat fault plane and
the frequency (or wavenumber)-independent radiation pat-
tern. This suggests that a 3D faulting model would be nec-
essary to obtain more realistic broadband strong motions in
future study.
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