工学院大学新宿校舎の地震応答特性の評価に関する研究

D2-04034 島村 賢太

工学院大学新宿校舎 立体フレームモデル 地震応答特性

1.はじめに

工学院大学新宿校舎の図1中に示すような質点系モデ ルについては、既往の研究により、モデル化されている。

せん断モデルは構造計算書を基に作成されたモデルで、 曲げせん断モデルは昨年度の微動観測記録を基に作成さ れている¹⁾。しかし、地震観測記録と質点系モデルの解 析結果を比較すると、明確な一致が見られない。

そこで、本研究では質点系モデルに代わり、図1右に 示すような大学棟(高層棟を指す。中層棟は対象外とし ている。)の立体フレームモデルによる解析を行い、地震 応答特性を評価することを目的としている。

2.研究の流れ

解析に必要な大学棟の立体フレームモデルを作成する。 次に固有値解析行う。解析結果を構造計算書²⁾、質点系 モデル解析結果、大学棟の微動観測記録と比較・評価し、 モデルの妥当性を検討する。そして、地震応答解析(弾 性)を行う。解析結果を地震観測記録、質点系モデル解 析結果と比較し、地震応答特性を評価する。

3.大学棟立体フレームモデルの作成

3.1 立体フレームモデルの作成

SNAP を使って立体フレームモデルを作成した。モデ ルは剛床を仮定・基礎固定とする。また、床スラブの剛 性を合成梁と評価し³⁾、柱梁接合部を剛域として入力し た。合成梁と剛域を考慮し、4 つのモデルを作成した。 合成梁・剛域無しのモデルを E1、合成梁無しで剛域有り のモデルを E2、合成梁有りで剛域無しのモデルを E3、 合成梁・剛域有りのモデルを E4 とする⁴⁾。

3.2 固有值解析

モデルの妥当性を検討するため、固有値解析を行った。 それぞれの固有周期を表 1、固有モード図を図 2 に示 す。それぞれのモデルの固有周期を比較すると、E4 が観 測記録に近い。モード図を比較すると、2 次モードでは E4 が質点系に比べ観測記録に近い。

4. 地震応答解析(弾性)

4.1 入力地震波

新潟県中越地震、千葉県北西部地震の大学棟の1階で 観測された加速度波形を入力地震波とし地震応答解析を 行った。解析条件は NS 成分、EW 成分の2成分同時入 力、地震観測記録に合わせ271秒間とする。入力地震波 の時刻歴加速度波形とフーリエスペクトルを図3に示す。

表1 固有周期

モデル種別		合成梁	剛域	固有周期				
				NS		EW		わじわ
				1次	2次	1次	2次	12010
構造計算書		0	×	3.31秒	1.08秒	3.14秒	1.08秒	-
せん断モデル		0	×	3.30秒	1.30秒	3.14秒	1.19秒	-
曲げせん断		0	×	3.02秒	1.02秒	2.96秒	1.10秒	-
立体モデル (本研究)	E1	×	×	3.51秒	1.13秒	3.39秒	1.17秒	2.5秒
	E2		0	3.04秒	0.98秒	3.03秒	1.04秒	2.5秒
	E3	0	×	3.14秒	1.01秒	3.03秒	1.06秒	2.2秒
	E4		0	2.75秒	0.89秒	2.71秒	0.94秒	1.9秒
微動観測記録				2.75秒	0.85秒	2.63秒	0.87秒	1.8秒

図3 1階EW方向加速度波形・フーリエスペクトル

減衰は初期剛性比例型でh=0.01とする。立体フレーム モデルは固有値解析結果が微動観測記録と近い E4 を使 用する。

4.2 地震応答解析結果

ここでは千葉県北西部地震の解析結果を示す。時刻暦 波形を観測記録に重ねて図4に示す。加速度波形で観測 記録とモデルの応答の最大値を比較すると、観測記録が 58gal、E4 が 54gal、曲げせん断モデルが 42gal、せん断 モデルが 36gal となり、E4 と観測記録が近い。また 25 秒付近の波形を比較すると、曲げせん断モデル・せん断 モデルは観測記録と位相のずれも大きく、一致しない。 しかし、E4 は位相のずれも少なく、観測記録に近い。

変位波形で観測記録とモデルの応答の最大値を比較す ると、各モデル甲乙つけがたいものとなっている。しか し、75 秒から 125 秒付近の後続波形を比較すると、曲げ せん断モデル・せん断モデルは波形の崩落形状が一致し ないが、E4 は崩落形状が近い。

応答がどのような周期成分を持っているか比較するため、図5にフーリエスペクトルを示す。卓越周期が1次 周期で、せん断モデルが約3.1秒、曲げせん断モデルが約2.9秒、E4が約2.8秒、観測記録が約2.8秒となる。2 次周期をみると、せん断モデルが約1.15秒、曲げせん断 モデルが約1.1秒、観測記録が約0.9秒、E4が約0.9秒 とる。卓越周期を比較すると、せん断モデル・曲げせん 断モデルでは観測記録と一致しないが、E4は観測記録と 一致する。

千葉県北西部地震の応答で、曲げ変形が出ているのか を検討する。29 階の南側と北側の点の、UD 成分の変位 波形を比較する(図 6)。南側と北側を比較すると、位相 が逆なため、曲げ変形が確認できる。

5.まとめ

- 各モデルの固有周期を比較すると立体フレームモデルの固有周期が微動観測記録に近いことが確認できた。
- 弾性範囲内における応答解析を行った結果、質点系
 モデル解析結果より立体モデル解析結果の方が観測
 記録に近いことが確認できた。

今後の課題としては、より等価な立体フレームモデル の作成や、立体フレームモデルによる制震補強の検討な どが挙げられる。

参考文献

- 2 棟の超高層建築を連結した制震構造の地震応答解 析に関する研究 工学院大学 2006 年度卒業論文
- 2) 工学院大学新宿校舎構造計算書
- 3) 日本建築学会: RC 設計指針
- エ学院大学新宿校舎の地震応答特性の評価と制震補 強に関する研究 工学院大学 2007 年度修士論文

図 4 千葉県北西部地震解析結果(29 階 EW 方向) 上:加速度波形 下:変位波形

図5 応答のフーリエスペルトル

