RC 造腰壁・垂れ壁付短柱の耐震性能に関する大変形繰返し加力実験 (その1:実験概要と結果)

			Ē
二次壁	腰壁・垂れ壁付短柱	帯筋比	
部分スリット	偏心接合	柱有効内法高さ	

1. はじめに

本報告では、一般の既存建築物で多く存在するにも拘 らず技術資料の少ない偏心二次壁付柱に着目し,(高さ/幅) 比の比較的小さい両側腰壁・垂れ壁付短柱の大変形下に 至るまでの挙動に関する実験結果を報告する。また,柱と 壁際に部分スリットを設けた場合の短柱の脆性挙動改善 効果を確認し, 耐震診断の第2種構造要素の判定資料を 提供する。なお,本報(その1)では実験概要と共に,諸限 界荷重の実験値と既往の評価式との比較検討を示し,次 報(その 2,3,4)で実験結果の詳細を報告する。

2. 実験概要

試験体概要 2.1

試験体は,中低層 RC 造学校校舎の1 階北側架構にある 両側腰壁・垂れ壁付柱を想定し,大きさは実大の約 1/2.5 とした。試験体数は10体で,表-1に試験体パラメータ概 要,図-1 に試験体詳細図を示す。柱及び腰壁・垂れ壁の 配筋は,柱せん断補強筋以外は共通である。

変動要因は、柱と壁の偏心接合の有無、 帯筋比 p_w, 部分スリットの有無およびスリットの深さ(ta)で,

正会員	松井	健太郎 ^{*1}	正会員	澤口	祐樹 ^{*1}
同	瀧澤	正明 ^{*2}	同	小室	達也^{*3}
同	広沢	雅也*4			

偏心有り(No.1,2,3,4,5,6),偏心無し(No.7,8,9,10)の2種類, 帯筋比(帯筋間隔 x の相違)は 期を想定した pw=0.10% と 期を想定した pw=0.26%の 2 種類 , スリットの有無 及び, 深さ(t_d=25mm, 37.5mm)を変動させた3種類とした。 なお,鉄筋とコンクリートの材料特性は表-2,3に示す。 2.2 実験方法

加力装置は,パンタグラフによって上下スタブを拘束 状態とし水平方向の平行移動を保持する蛇腹式柱実験装 置を用い,軸力 169.5kN(0=2.94N/mm²)の一定軸力下で, 水平アクチュエーターによる多数回正負繰返し水平静加 力を行った²⁾。なお,上下スタブの相対水平変位を測定し, 柱高さで除した値を層間部材角 R とした。

加力は,図-2のように終局強度の約70%を目安に荷重 約80kN まで正負方向に荷重制御で1サイクル行い,それ 以降は変位制御に切り替え,部材角 R=1/400~1/10 の繰り 返し加力を原則とした。最終的には鉛直方向に柱が崩れ るまで水平加力を続ける加力計画とした。但し,軸力保 持能力喪失時に備えて鉛直変形が 30mm 以上になった段 階で加力が強制終了するようにしている。

Experimental Study on Seismic Performance of Reinforced Concrete Columns with Spandrel-and Hanging-Walls under Large Deformation Part1: A Research Background and an Experiment Outline

Kentaro MATUI, Yuuki SAWAGUTI, Masaaki TAKIZAWA, Tatsuya KOMURO, Masaya HIROSAWA

3. 実験結果

表-4 に試験体 10 体のひび割れ荷重,最大耐力の実験結 果一覧と実験値と終局強度計算値の比を示す。なお,詳 しい実験結果は次報(その 2,3,4)で報告する。耐力決定要因 は、スリットが無い試験体では柱主筋が降伏せずせん断 破壊が先行し、スリットが有る試験体では壁破壊後に柱 端部の曲げ降伏となっている。また,腰壁・垂れ壁付柱 の終局強度や破壊モードは,柱の有効内法高さ h_{0e}の設定 により評価できると思われる。ここでは, h_{0e}を 壁フェ イス位置からの長さ(360mm), 既往の提案³⁾(520mm),

独立柱の高さ(1000mm)について実験値と計算値を比較 した。以下に明らかになった事を記す。

- 1) (高さ/幅)比が小さい腰壁・垂れ壁付短柱の耐力, 変形 や破壊性状は、部分スリット、帯筋比や偏心接合によ り影響を受けることが分かった。特に,構造スリット を付加するとその影響が大きく,最大耐力は低下する ものの, 靭性に優れている結果になった。
- 2) スリット無しで偏心接合していない場合(No.7,9)は, h_{0e}をとした場合の実験値と計算値が最も精度が良い。 また,計算値から推測される破壊モードは共にせん断

破壊となり,実験結果と一致している。

- 3) スリット有りで偏心接合していない場合(No.8,10)は, 腰壁や垂れ壁を無視して h_{ce}を とした場合の実 / 計 が 1.08~1.28 となり, やや実験値の方が大きな値とな った。また,破壊モードも計算ではせん断型となり, 適切に評価できていない。これは部分スリットである ためで,この影響を考慮する必要がある。
- 4) 腰壁・垂れ壁が偏心して付加されると,最大耐力は約 25%前後低下し,実/計でも実験と同様な傾向になっ た。捩り応力によるせん断耐力低下が大きいことが分 かる。一方,スリットを設けると実験では最大耐力は, 約 10%程度低下し,なお,実験の耐力決定要因は全て 柱端部の曲げせん断破壊となった。

(参考文献)

- 1) 日本建築学会:鉄筋コンクリート構造計算規準同解説 許容応力 度設計法 - , 2000 年 4 月
- 2) 赤井,瀧澤,小室,広沢:RC 造そで壁付柱の耐震性能に関する 大変形加力実験(その1:実験概要と結果),日本建築学会大会 学術講演梗概集, pp183~184, 2003年9月
- 3) (社)建築研究振興協会,(中)構造調査コンサルティング協会,横 浜市建築設計協同組合:既存建築物の耐震診断・耐震補強設計マ ニュアル 2003 年版, 2003 年 8 月

表-4 実験結果一覧

		初期 剛性 ¹ K _e (kN/mm)		ひび割れ強度				最大	終局強度計算值 5					変位 ⁷						
No.	試験体記号			曲げ ² Q _{mc} (kN)		曲げ せん断 ³ Q _{BSC} (kN)		せん断 ⁴ Q _{sc} (kN)		載八 耐力 _t Q _m (kN)	曲げ _{cw} Q _{mu} (kN)		せん断 _{cw} Q _{su} (kN)							
												6			6		\mathbf{R}_{Qmax}	\mathbf{R}_{ou}		破壊
											(kN) 360 _{mm}	520 _{mm}	1000 _{mm} 3	$360_{mm} \hspace{0.5cm} 520_{mm}$	$1000_{\rm mm}$			μ_{ou}	τ-Γ'	
		実	実/計	実	実/計	実	実/計	実	実/計	実	実/計	実/計	実/計	実/計	実/計	実/計	(×10 ⁻	³ rad.)		
1	01C10EW -	158.0	0.21	78.1	0.89	-	-	120.9	0.84	120.9	0.47	0.68	1.31	0.63	0.81	1.26	3.94	5.00	1.27	DT
2	02C10EWS1/2	174.7	0.24	72.2	0.83	98.7	0.41	-	-	106.6	0.42	0.60	1.16	0.55	0.72	1.11	4.97	17.18	3.46	CBS CS
3	03C10EWS3/4	391.9	0.53	72.7	0.83	73.3	0.31	-	-	85.2	0.33	0.48	0.92	0.44	0.57	0.89	9.93	13.80	1.39	CBS CS
4	04C04EW -	271.2	0.37	72.8	0.83	-	1	109.3	0.76	116.7	0.46	0.66	1.27	0.57	0.73	1.08	4.79	6.95	1.45	DT
5	05C04EWS1/2	404.0	0.55	67.9	0.78	101.0	0.42	81.4	0.57	107.9	0.42	0.61	1.17	0.53	0.67	1.00	4.95	40.55	8.19	CBS CS
6	06C04EWS3/4	67.8	0.09	66.5	0.76	86.9	0.36	84.6	0.59	89.7	0.35	0.51	0.97	0.44	0.56	0.83	4.44	33.42	7.53	CBS CS
7	07C10W -	666.9	0.90	78.9	0.90	-	-	154.8	1.07	154.8	0.60	0.87	1.68	0.80	1.04	1.60	5.45	10.03	1.84	DT
8	08C10CWS1/2	763.6	1.03	68.1	0.78	108.7	0.45	75.4	0.52	116.2	0.45	0.65	1.26	0.60	0.78	1.20	8.15	11.12	1.36	CB CS
9	0904CW -	93.4	0.13	67.7	0.77	129.7	0.54	131.6	0.91	161.8	0.63	0.91	1.75	0.78	1.00	1.49	7.31	14.95	2.05	WC CS
10	10C04CWS1/2	151.0	0.20	76.7	0.87	114.6	0.48	71.4	0.49	118.0	0.46	0.66	1.28	0.57	0.73	1.08	5.13	18.81	3.67	CB CS

注) 実:実験値(正加力時),実/計:実験値:計算値(計算値と式中の記号の詳細はそれぞれの文献を参照)

- :計測時にひび割れが不明確で,計測できなかった場合,Qm:最大耐力 1 初期剛性(K_e): $k = Q = Q = \frac{12E_c \cdot I_c}{C_c} + \frac{G_c \cdot A_c}{C_c}$

$$c + B h_0^3 \cdot \kappa \cdot h_0$$

$$2 \quad \text{ind} \text{IOOBIT}(Q_{BC}) : M_{BC} = 1.8\sqrt{F_c} \cdot Z_e + N \cdot Z_e / A_c \quad \rightarrow Q_{BC} = \frac{2 \times M_{BC}}{h_c}$$

3 曲げせん断ひび割れ(Q_{BSC}):
$$Q_{PSC} = 0.265b \cdot d_{3} \sqrt{F_{a}} + M_{PC} / (M/Q - d/2)$$

4 せん断ひび割れ(Q_{SC}):
$$Q_{SC} = 0.97 \sqrt{F_c} \cdot bD(1 + {}_0/{}_cF_t)^{0.41} \cdot (M/Q \cdot D)^{-0.62}$$

5 終局強度評価式 ・曲け

8

総局強度(
$$_{c}Q_{mu}$$
):
 $_{c}M_{u} = 0.5a_{g} \cdot \sigma_{y} \cdot g \cdot D_{c} + 0.5 \cdot N \cdot D_{c} \left(1 - \frac{N}{b \cdot D \cdot \sigma_{B}}\right) \rightarrow_{c}Q_{mu} = \frac{2 \times M_{u}}{h_{0c}}$

斯終局強度(Q_{-1}): (0.12k k (180 + z))

・せん断終局強度($_{c}Q_{su}$): $_{c}Q_{su} = \begin{cases} 0.12\kappa_{u},\kappa_{p},\ldots,k\\ M/(Q\cdot d) + 0.12 \end{cases}$ $\frac{B}{2}$ + 2.7 $\sqrt{p_w.\sigma_{wy}}$ $b \cdot j + 0.1N$ h₀:内法高さ(mm), I_c:柱の断面二次モーメント(mm⁴)

E.: コンクリートのヤング係数(N/mm²)

- G_c:コンクリートのせん断弾性係数(N/mm²)
- $F_c: コンクリートの圧縮強度(N/mm^2)$
- Z_e:鉄筋を考慮した柱の断面係数(mm³)
- N:軸方向力(N)
- _cF_t:コンクリートの引張強度(N/mm²) k_u:断面寸法による補正係数
- k。: 引張鉄筋比による補正係数(=0.82p.^{0.23})
- d: 引張鉄筋の中心から圧縮縁までの距離, j=7d/8
- p_w: せん断補強筋比, _{wy}: せん断補強筋の降伏強度(N/mm²) _B: コンクリート圧縮強度(N/mm²), M/Q=h₀/2 b_c: 柱幅(mm), D_c: 柱せい(mm), N: 軸力(N)
- g: 柱主筋重心間距離(mm), a_g : 柱主筋全面積(mm²)
- 6 文献 3)により, 腰壁・垂れ壁端から柱せいの 1/3 の長さを h₀に加えて, $h_{0e} = h_0 + 2 \times D_c/3 とする。$ $R_m:$ 最大耐力時水平撓み, $_{Qmax}$ × 10^3 /柱の材長 ($_m$ は最大耐力時の水平撓み,柱の材長は1000mm) 7

R_{ou}:限界耐力時水平撓み, ou × 10³/柱の材長 (ou は同一変形下での荷重サイクルの内,第1サイクルでの最大荷重が 80%未満に 塑性率µou: ou/ m

低下した時の限界水平撓み)

破壊モード:耐力決定要因	靭性決定要因				
DT:対角線せん断破壊	CBS:曲げせん断破壊	CS:柱せん断破壊	CB:柱曲げ破壊	WC:壁圧壊	
工学院大学大学院修士	課程	*1 Graduate	e School, Kogakuin Ui	niv.	

- *1 工学院大学大学院修士課程 *2(株)桂設計・修士(工学)
- *3 東京理科大学理工学部建築学科助手・博士(工博)
- *4 工学院大学工学部建築学科教授・工博
- *4 Professor, Kogakuin Univ., Dr.Eng

*3 Research Associate, Tokyo Univ. of Science, Dr.Eng

*2 KATURA SEKKEI INC., M.eng