首都圏にある超高層キャンパスの地震防災対策に関する研究(その4) 超高層ビルの制震補強の検討

超高層建築	制震補強	連結制震
時刻歴応答解析	長周期地震動	

1. はじめに

本報では、その3 で報告した解析モデルを用いた時刻 歴応答解析による超高層建築物の制震補強の検討につい て報告する。対象とする建物は、その3 に概要を示した 大学棟及びオフィス棟である。補強方法は、大学棟につ いて階毎に制震ダンパーを配置する場合と、大学棟とオ フィス棟の特定階同士を制震ダンパーで水平に連結する 場合を想定した。また敷地における想定地震動として、 その1 で報告した想定東海地震による長周期成分を含ん だ地震動と、その2 で報告した首都直下地震による地震 動を考慮した。

2. 制震部材を付加した大学棟の時刻歴応答解析

減衰力と速度の関係がバイリニア型となる粘性系の制 震部材(オイルダンパー)を用いた補強を仮定し、時刻 歴応答解析を行った。なお、本検討においては、制震部 材の各種依存性及び取付部材の剛性は考慮していない。

その3 にて作成した等価曲げせん断モデルに、最大速 度を50kine に基準化した1940Elcentro 波(NS 方向)を入力 した応答解析結果を基に、最大層間変形角が NS 方向は 1/200 を超えている層にダンパーを配置し、EW 方向は 1/150 を超えている層に配置した。なお、EW 方向の 16 階及び21 階はスーパーフレームにより、剛性が高く変形 量が少ないため、中層階にはダンパーを配置せず、上層 階と下層階に配置した。各階のダンパー配置本数と、そ の最大減衰力を表1 に示し、表2 に用いるダンパーを代 表して最大減衰力が 2000KN のオイルダンパーの性能を 示す。ダンパーを配置した結果、最大層間変形角で比較 をして建物の減衰定数を4%から6%にした場合と同様の 効果があることが確認できた。また、その2 で示した首

	NS7	与向		EW7	方向
階数	本数	最大減衰力	階数	本数	最大減衰力
30	4	1000kN	30	4	250kN
29	4	1500kN	29	4	500kN
18-28	4	2000kN	28	4	750kN
17-16	4	1500kN	27	4	1000kN
15	4	1000kN	23-26	4	1500kN
12-14	4	500kN	22	4	750kN
1-11	0		16-21	0	
/	/		7-15	4	1500kN
/	/		5-6	4	1000kN
	/		1-4	0	
合計	24	7000kN	合計	32	7250kN

表1 各階ダンパー配置本数と最大減衰力

正会員	○星 幸男*	同	鱒沢	曜*
同	久田 嘉章**	同	小菅	芙沙子*

表2 ダンパー性能					
最大減衰力Fmax	2000KN				
最大速度Vmax	150mm/s				
リリーフ荷重Fr	1600KN				
1次粘性係数C1	50.0KN∙s∕mm				
2次粘性係数C2	3.39KN∙s/mm				
装置剛性K	430KN/mm				

Study on Earthquake Disaster Mitigation of High-Rise Building of University Campus in Tokyo, Japan(part4) - Analytical study on seismic dumper retrofit of high-rise building-

Yukio HOSHI, Yoe MASUZAWA Yoshiaki HISADA and Fusako KOSUGE 都直下地震(内閣府パラメータ使用)を入力波とした結 果、NS 方向は補強前の状態において、上層階の応答が 1/100 という構造的に被害が出る恐れがある値であったが、 ダンパーを配置することで全層の応答を 1/120 以下まで 低減することが確認され、EW 方向は、一部で 1/150 を超 える応答を示していたが、補強後は全層において 1/200 以下に低減する事が確認出来た。さらに、その 1 で示し た長周期成分が卓越する東海地震を入力波とした結果は、 補強前においても、NS 方向 1/300 以下、EW 方向 1/500 以下と小さな応答を示していた。補強後は更に応答を低 減することが確認され、NS 方向 1/400 以下、EW 方向 1/600 以下という結果となった。最大塑性率もダンパーを 配置することにより、どの入力波においても明確な応答 の低減が確認された。

3.2棟連結の時刻歴応答解析

その3において作成した2棟の等価曲げせん断モデル を用い、連結制震部材を付加した時刻歴応答解析を行っ た。連結ダンパーの配置を図2に示す。2棟は斜めに並 んで建っているため、約45°方向に設置し、これを主軸 方向に換算した値をダンパーの性能として、各建物のね じれは生じないものと仮定した。換算後のダンパー性能 を表3に示す。2.と同様に速度と減衰力の関係がバイ リニアの性能を持つオイルダンパーを仮定し、連結階数 は1次及び2次モード時の変形が卓越する、大学棟27・ 15階、オフィス棟29・16階の計2箇所に配置した。

入力地震波は、首都圏直下地震(NS 方向)、東海地震 (NS 方向)、長周期地震の設計用地震波として、用いられ てきた 1968Hachinohe 波(NS 方向)の最大速度を 50kine に 基準化した波形を用いた。解析結果を図 3 に示す。ここ では NS 方向の解析結果を示す。

首都直下地震(NS 方向)のような、継続時間が短く衝撃 波のようなピークがある波形においては建物の塑性率が 大きく連結の効果は小さい。一方、東海地震(NS 方向)で は、固有周期の近い関係にある 2 棟においても、明確な 応答の低減が見られ、大学棟全層において 1/450 以下の 応答とする事が確認され、単独の制震補強と同等な応答 低減が確認された。また塑性率は1を超えておらず、建 物の塑性化が起きずに連結ダンパーが有効に作用してい る事が確認出来る。

4. まとめ

粘性系の制震部材(オイルダンパー)を付加した時の 応答低減を等価曲げせん断モデルを用いた時刻歴応答解 析より確認した。また、連結制震補強を検討した結果は、 条件により応答低減効果が確認出来た。

【謝辞】本研究は、文部科学省の学術フロンティア事業の「工学院大学地 震防災・環境研究センター」による研究助成により行われました。

- * 工学院大学大学院工学研究科
- ** 工学院大学建築学科

** Department of Architecture, Kogakun University