首都圏にある超高層キャンパスの地震防災対策に関する研究(その3)

人力加振観測

超高層ビルの微動観測と地震応答解析

常時微動観測

	正会員	○小菅	芙沙子*	同	鱒沢	曜*
	同	久田	嘉章**	同	星	幸男*
時刻歴応答解析						

1. はじめに

超高層建築

本報では、本研究において対象とする建物の概要を示 し、設計時の振動解析モデルと建物の常時微動観測及び 人力加振観測の結果を基に、実際の建物により近い振動 解析モデルの構築を行う。

2. 対象建物概要

対象建物は、超高層建築物である大学棟とオフィス棟である。図1、図2に配置及び立面、表1に建物概要を

建物名称	大字棟(上字院大字高唐棟)オノイス棟(SIECビル)			
建築場所	東京都新宿区西新宿			
竣工年	1989年			
基準階面積	1170m ^²	1499m ^²		
階数	地上29階,地下6階,塔屋1階	地上28階,地下6階,塔屋1階		
軒高/最高高さ	123.45m/143.00m	111.29m/130.00m		
アスペクト比	NS:5.59 EW:3.72	NS:3.96 EW:3.13		
構造種別	地上:鉄骨造(ブレース付ラーメン架構)			
	地下1~2階:鉄骨鉄筋コンクリート造			
	地下3~6階:鉄筋コンクリート造			

3. 観測地震記録

2 棟に設置されている強震観測システムによって得ら れた 2005 年 7 月 23 日千葉県北西部地震における 29 階で の観測記録のフーリエ速度スペクトルを図 3 に示す。ま た、X 軸に EW 方向、Y 軸に NS 方向の変位をとり、2 棟 の軌跡(上図)と大学棟から見たオフィス棟の挙動(下 図)を図4に示す。観測結果より、固有周期は近いが上 下層ともに挙動の差を確認出来た。

4. 大学棟の常時微動・人力加振観測

測定には、ポータブル地震計(SMAR-6A3P)を用い、サンプリング周波数100Hz、測定時間3分間で、建物の主

200 Fourier acceleration spectrum 大学棟(29階)NS amplitude ົບ 150 ເອີ້າ 100 オフィス棟(28階)NS 大学棟1次固有周期2.90秒 Fourier an (kine-50 ィス棟1次固有周期 2.80 秒 0 Period (sec) 0.1 1 10 100 200 大学棟(29階)EW Fourier amplitude Fourier acceleration spectrum (kine-sec) 0 (kine-sec) 0 (kine-sec) オフィス棟(28階)EW 大学棟1次間有周期 2.75 秒 マイス棟1次固有周期 2.92 0.1 Period (sec) 10 100 1 図3 フー -リエ速度スペクトル(千葉県北西部地震) 59 bg 0 EW(cm) EW(cm) 2 0 o (cm) 図4 2棟の軌跡と相対的挙動

(左:8階(2棟共)、右:大学29階オフィス28階)

軸方向(NS、EW)及び上下方向の加速度成分を計測した。常時微動観測、人力加振観測共に、3成分の計測が可能な地震計を4基使用した同時観測を以下の測定パターンで実施した。

- ①1 階及び 25 階平面の N 端、S 端の計 4 点での NS 成分 と UD 成分の同時測定
- ②1 階及び 25 階平面の E 端、W 端の計 4 点での EW 成 分と UD 成分の同時測定

また、人力加振は 14 階で行い、測定パターンに合わせ て NS 方向と EW 方向に加振した。図5に観測点及び加 振位置を示す。常時微動観測より、水平成分の 1 次固有周 期は、NS 方向約 2.75 秒、EW 方向約 2.60 秒であった。人力 加振観測においては、この 1 次周期に合わせて加振を行い、 振幅を増幅させた。観測記録より 25 階の代表観測点で最大 水平変位を記録した同時刻における全観測点の変位記録を基 に振動モードを確認した。図6に EW 方向の振動モードを 示す。この結果より建物の曲げ変形が顕著に読み取れる他、 スウェイ、ロッキングによる変位は比較的小さいことを確認 した。

Study on Earthquake Disaster Mitigation of High-Rise Building of University Campus in Tokyo, Japan (Part3) - Study on microtremor survey and dynamic response analysis of high-rise building

Fusako KOSUGE, Yoe MASUZAWA Yoshiaki HISADA and Yukio HOSHI

5. 振動解析モデルの作成

設計時の振動解析モデルは、大学棟 30 質点、オフィス棟 29 質点の等価せん断モデルであるが、4.にて得られた振動モー ドにおいて曲げ変形が顕著に確認出来る為、これを説明でき る等価曲げせん断モデルを以下の手順で簡易に作成した。支 点条件は、観測結果よりスウェイ、ロッキングの影響は小さ いと判断し、設計時と同様に下部構造を剛とし、基礎固定と した。

- ①曲げ剛性(EI)を各階柱の断面2次モーメントから求め、曲げ変形による水平変位は、片持ち梁のたわみ曲線の式を応用し求める。
- ②人力加振観測から得られた 25 階の最大水平変位を曲げ 変形とせん断変形による水平変位に分解する。
- ③せん断剛性(GA)を②で求めた、せん断変形による水 平変位となるように設計時の振動解析モデルにおける せん断剛性を係数倍して求める。

上記に従い作成した振動解析モデル概要を表2に示す。 表中の、せん断比率は、②にて求めたせん断変形による 水平変位の割合を示している。表2には、設計用振動解 析モデルの概要も併せて示す。本建物に設置されている 強震観測システムによって得られた2004年10月23日新 潟県中越地震の1階での記録を入力波として作成した解 析モデル及び設計時のモデルによる時刻歴応答解析を行 った。観測された加速度波計(NS方向)を図7に示す。 図8に、29 階(最上階)における観測記録及びシミュレ ーション波形の加速度フーリエスペクトル(NS方向)を 示す。等価せん断モデルに比べ作成した等価曲げせん断 モデルによる卓越周期は観測記録に近い結果が得られた。 オフィス棟については、常時微動・人力加振観測未実施 のため、観測システムで観測された地震記録との比較に よりせん断剛性の比率を求めた。

6. 時刻歴地震応答解析による比較

5. において作成した振動解析モデル(等価曲げせん 断モデル)と設計時の振動解析モデル(等価せん断モデ ル)に 1940Elcentro 波の NS 方向を 50kine に基準化した 波を入力した時の最大層間変形角を図9に示す。等価せ ん断モデルと比べ等価曲げせん断モデルでは、上層階な ど応答が大きくなる結果となった。

7.まとめ

本報では、常時微動・人力加振実験の結果より、本建物 が曲げ変形をしていることを確認した。また、この実験 の結果に基づく等価曲げせん断型振動解析モデルの作成 を行った。観測地震記録との比較により、より実際の建 物に近いモデルを構築することができた。

謝辞

本報は、文部科学省の学術フロンティア事業の「工学院大学地震防 災・環境研究センター」による研究助成により行われました。また、 常時微動・人力加振観測においては芝浦工業大学紺野研究室、工学 院大学宮澤研究室にご協力頂きました。深く御礼申し上げます。

* Graduate School of Engineering, Kogakuin University

*工学院大学大学院工学研究科

^{**} Department of Architecture, Kogakuin University