Landers M0=7.5x1026dyne-cm, Mw7.2 Miyakoshi (personal comm.) Sekiguchi and Iwata (2000) Iwata et al. (2000) 1999 (Mw7.4) 2000 (Mw6.8) Somerville et al. (1999) M8 Wells and Coppersmith (1994) Fig. 1(c) Wells and Coppersmith (1994) D=M0/μLW 1.32 (Fig. A2) Wells and Coppersmith (1994) Somerville et al. (1999) (1975) Wells and Coppersmith (1994) Shimazaki (1986) 7.5x1025dyne-cm Mo1/2 2.01 comparable Fig. 3(a) Somerville et al. (1999) Miyakoshi (personal comm.) Wells and Coppersmith (1994) (2000) Wmax=20km Fig. 3(b)Somerville et al. (1999) Miyakoshi (personal comm.) Wells and Coppersmith (1994) Somerville et al. (1999) 1026dyne-cm Wells and Coppersmith (1994) Somerville et al. (1999) 400km2(L=20km, W=20 km) (7.6x1025 dyne-cm ) S Mo1/2 Wells and Coppersmith (1994) Somerville et al. (1999) Miyakoshi (personal comm.) 1,2,3 (Somerville et al. (1999) ) 4 (Wells and Coppersmith (1994) (1998) ) (1998) Appendix Wells and Coppersmith (1994) Fig. A2 Wells and Coppersmith (1994) (D=M0/μLW 参考文献 入倉孝次郎・三宅弘恵, 2000, 強震動予測のための震源特性化の手続き, 文部省科学研究費(No.08248111) 特定領域研究(A) 計画研究A1「活断層の危険度評価と強震動予測」,第7 章付録,128-145. 岩田知孝・関口春子・松元康広・三宅弘恵・入倉孝次郎, 2000, 2000 年鳥取県西部地震の震源過程と震源近傍強震動, 日本地震学会講演予稿集2000 年秋季大会, T06. Iwata, T., H. Sekiguchi, and A. Pitarka, 2000, Source and site effects on strong ground motions in near-source area during the 1999 Chi-Chi, Taiwan, earthquake, EOS Trans. Am.Geophys. Union, 82, 882, 2000. 松田時彦, 1975, 活断層から発生する地震の規模と周期について, 地震2, 28, 269-284. Miyakoshi, K., T. Kagawa, H. Sekiguchi, T. Iwata, and K. Irikura, 2000, Source characterization of inland earthquakes in Japan using source inversion results, Proc. 12WCEE (CD Rom), Vol. 3, Ref. 1850. Sekiguchi, H., 1999, Rupture process analysis of the 1995 Hyogo-ken Nanbu earthquake, 京都大学大学院理学研究科学位論文. Sekiguchi, H. and T. Iwata, 2000, Rupture process of the 1999 Kocaeli, Turkey, earthquake using strong motion waveforms, submitted to Bull. Seism.Soc. Am. Shimazaki, K., 1986, Small and large earthquake: the effects of thickness of seismogenic layer and the free surface, Earthquake Source Mechanics, AGU Monograph, 37 (Maurice Ewing Ser.6 ed. S. Das, J. Boaghtwright, and C. H. Scholz), 209-216. Somerville, P. G., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, A. Kowada, 1999, Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seismological Research Letters, 70, 59-80. Takemura, M., T. Ikeura, and R. Sato, 1990, Scaling relations for source parameters and magnitude of earthquakes in the Izu Peninsula region, Japan, Sci. Rep. Tohoku Univ., 32, 77-89, 1990. 武村雅之, 1998, 日本列島における地殻内地震のスケーリング則―地震断層の影響および地震被害との関連―, 地震2, 51, 211-228. Wells, D. L. and K. L. Coppersmith, 1994, New empirical relationships among magnitude, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am., 84, 974-1002. (付録) スケーリング式一覧 log L =0.6 M -2.9 (1) 松田 (1975)log M0 = 1.17 Mj + 17.72 (2) Takemura et al. (1990) log L = 0.513 log M0 - 11.99 (3) (1) に(2) を代入:Fig1(a), Fig2(a) の水色線log L = 0.524 log M0 - 12.44 (4) Shimazaki (1975):M0 >= 7.5x1025 dyne-cmlog L = 0.281 log M0 - 5.98 (5) Shimazaki (1975):M0 < 7.5x1025 dyne-cm D(cm)=1.56x10-7x M0 1/3 log D (cm) = 1/3 log M0 . 6.50 (9) (8) の値を2.01 倍した式   (アスペリティ部分の平均すべり量に相当) log S = 2/3 log M0 - 14.65 (10) after Somerville et al. (1999) S=2.23x10-15x M02/3 log S = 2/3 log M0 - 14.74 (11) 武村(1998):M0 >= 7.5x1025 dyne-cm log S = 1/2 log M0 - 10.71 (12) 武村(1998):M0 < 7.5x1025 dyne-cm log S = 1/2 log M0 - 10.34 (13) 今回の検討:M0 >= 7.6x1025 dyne-cm S=4.59x10-11x M01/2 log D (m) = 0.6 M -4.0 (6) 松田 (1975) log D (m) = 0.513 log M0 - 13.09 (7) (6) に(2) を代入:Fig1(c), Fig2(c) の水色線 log D (cm) = 1/3 log M0 . 6.81 (8) after Somerville et al. (1999) (a) L of rupture area vs. M0 103 Somerville et al. (1999) L of rutpre area (km) Miyakoshi (personal comm.) 102 low angle dip-slip fault 101 Wells and Coppersmith (1994) 100 1021 1022 1023 1024 1025 1026 1027 1028 1029 M0 (dyne-cm = 10-7 Nm) (b) W of rupture area vs. M0 103 Somerville et al. (1999) W of rutpre area (km) Miyakoshi (personal comm.) 102 low angle dip-slip fault 101 Wells and Coppersmith (1994) 100 1021 1022 1023 1024 1025 1026 1027 1028 1029 M0 (dyne-cm = 10-7 Nm) (c) Average slip of rupture area vs. M 0 103 average slip of rutpre area (cm) Somerville et al. (1999) Miyakoshi (personal comm.) 102 low angle dip-slip fault 101 Wells and Coppersmith (1994) 100 1021 1022 1023 1024 1025 1026 1027 1028 1029 M0 (dyne-cm = 10-7 Nm) Fig. 1 (a) Surface and subsurface rupture length vs. M0 103 rutpre length (km) 102 101 100 (b) Maximum and average surface disp. vs. M0 1021 1022 1023 1024 1025 1026 1027 1028 1029 M0 (dyne-cm = 10-7 Nm) Fig. 2 (a) L vs.W of rupture area 103 L < 20km --> W = L W of rutpre area (km) 102 101 100 (M0 < 7.6*1025 dyne-cm: Mw<6.52) Rupture area = 2.23 * 10-15 * M02/3 L > 20km --> W = 20km (M0 > 7.6*1025 dyne-cm : Mw>6.52) Rupture area = 4.59 * 10-11 * M01/2 (b) Rupture area vs. M0 This study Wmax=20km Somerville et al. (1999) Takemura (1998) Wmax=13km 104 rutpre area (km2) 103 102 101 100 Fig. 3 (a) (b) 103 L of rupture area 103 L of rupture area surface rupture length (km Wells and Coppersmith (1994 102 101 100 subsurface rupture length (km) Wells and Coppersmith (1994 102 101 100 L of rutpre area (km) L of rutpre area (km) (c) Somerville et al. (1999) (d) Somerville et al. (1999) downdip width (km Wells and Coppersmith (1994 103 102 101 100 W of rupture area 100 101 102 103 average surface disp. (cm) Wells and Coppersmith (1994 Average slip of rupture area 103 102 101 100 100 101 102 103 W of rutpre area (km) average slip of rupture area (cm) (e) Somerville et al. (1999) (f) Somerville et al. (1999) rupture area (km2) Wells and Coppersmith (1994 104 103 102 101 Rupture area M0 (dyne-cm = 10-7 Nm) Wells and Coppersmith (1994 1027 1026 1025 Seismic moment 1025 1026 1027 101 102 103 104 rutpre area (km2) M0 (dyne-cm = 10-7 Nm) Somerville et al. (1999) Somerville et al. (1999) Fig. A1 Wells and Coppersmith (1994) Fig. A2