

BENCHMARK TESTS FOR STRONG GROUND MOTION PREDICTION METHODS: CASE FOR STOCHASTIC GREEN'S FUNCTION METHOD (PART2)

加藤研一 —— *1	久田嘉章 ―― *2	大野 晋 —— *3
野畑有秀 ―― *4	森川 淳 —— *5	山本 優 —— *6

キーワード:

強震動予測手法, ベンチマークテスト, 統計的グリーン関数法, 乱数, 点震源, 断層モデル

Keywords:

Strong motion prediction methods, Benchmark tests, Stochastic Green's function method, Random numbers, Point source, Fault model

Kenichi KATO Yoshiaki HISADA Susumu OHNO

1. はじめに

統計的グリーン関数法は高振動数帯域までの強震動波形を簡易に 計算できることから、強震動の面的評価などに広く用いられている。 しかしながら、乱数位相を用いた小地震動の作成法などに関して多 様な手法があり¹⁾、それら手法間の相違が計算結果に及ぼす影響を 把握する必要がある。以上の背景のもと、統計的グリーン関数法の ベンチマークテストを企画し、2010年にステップ1(点震源)と2(面 震源)を実施した²⁾。その際、地盤は半無限および2層の平行成層地 盤を設定し、震源の放射係数はSH波のみを対象として振動数一定 とした。2層地盤はSH波の鉛直平面波入射を仮定し、増幅特性を評 価した。以上のように、既報²⁾は単純な解析条件を設定していた。

本報は表1と表4に示すより複雑な解析条件を設定し、共著者ら の参加のもと、ステップ3(点震源)とステップ4(面震源)のベンチマ ークテストを実施した。ステップ1、2との相違はSH波に加えてSV 波も考慮し、振動数依存の震源の放射係数と基盤からの斜め入射に よる地盤増幅率を考慮した点である。その結果、上下動も励起され ることになり、3成分の地震動波形の提出を条件とした。本ベンチ マークテストには4チーム(大野・野畑・森川・山本)が独自の計算 コードを用いて参加した。久田は平行成層地盤の厳密なグリーン関 数³⁾を用いて参加したため、統計的グリーン関数法の前提条件とは 異なるが、理論値との比較の位置づけとして記載した。なお、新た に解析コードを作成する人が計算結果を十分に追随できるように、 計算条件を詳細に記述すると共に、各ステップごとに可能な限り多 くの計算結果を掲載した。

2. ステップ3(点震源)のベンチマークテスト

2.1 計算手法と計算条件

ステップ3は表1に示すS31~S34の4通りのテストを実施した。 点震源を図1に示す(x, y, z)=(0, 0, 2000)(単位 m)に置き、走向・傾

- *1 小堀鐸二研究所 統括部長 (〒107-8502 東京都港区赤坂 6-5-30)
- *2 工学院大学建築学部まちづくり学科 教授
- *3 東北大学 准教授
- *4 大林組技術研究所 主任技師
- *5 小堀鐸二研究所 課長
- *6 大成建設技術センター

Arihide NOBATA Atsushi MORIKAWA Yu YAMAMOTO

We performed a benchmark tests for the strong motion simulation methods using stochastic Green's function method. In addition to the previous paper (Part 1), frequency dependent radiation coefficient of the source and oblique incidences of both SH and SV waves are newly considered All the results calculated by four teams generally show good agreement to each other. Since random numbers are used in generating time histories, synthesized amplitude shows variation in particular frequencies. When applying the stochastic Green's function method, this variation should be in mind.

斜角・すべり角をそれぞれ(0°,90°,0°)とした。計算点は図1に示 す自由表面上のベクトル(x,y,z)=(6,8,0)に沿う+000,+002,+006, +010(km)の4点とした。地盤モデルは表2に示す2層の平行成層地 盤を基本としたが、モデルS31では基盤層(表2の2層目)のみの半 無限一様地盤とした。S34では表3に示す4層地盤を用いた。

表1 ベンチマークテスト・ステップ3の検討ケース

	ステップ3(点震源)			
モデル名	S31	S32	S33	S34
地盤	一様地盤	2層地盤 4層地		4層地盤
入射角	鉛直	斜め入射		
Q值	なし	あり		
震源	点震源			
ラディエーション (SH & SV)	振動数(f)一定		振動数(f)依存	
破壊開始時間				
有効振動数	0~20 Hz			
出力点	000, +002, +006, +010(計 4 点)			
出力成分	水平2成分	水平・上下3成分		
乱数の設定	各自の乱数3パターン			

*1 General Manager, Kobori Research Complex, Inc.

*2 Prof., Kogakuin University, School of Arch., Dep. of Urban Design and Planning

*6 Technology Center, Taisei Corporation

^{*3} Assoc. Prof., Tohoku University

^{*4} Chief Engineer, Obayashi Corporation Technical Research Institute

^{*5} Manager, Kobori Research Complex, Inc.

表2 地盤の物性値(モデル S32, S33, S41~S44)

	層厚	P波速度	S波速度	質量密度	Q	直
	D	Vp	Vs	ρ	On	05
	(m)	(m/s)	(m/s)	(kg/m ³)	Qþ	63
1層目	1000	4000	2000	2600	40f ^{1.0}	40f ^{1.0}
2層目(半無限)	8	6000	3464	2700	70f ^{1.0}	70f ^{1.0}
	表 3	地盤の特	勿性値(モ	デル S34)		
	層厚	P波速度	S波速度	質量密度	Q值	
	D	Vp	Vs	ρ	On	05
	(m)	(m/s)	(m/s)	(kg/m ³)	Qþ	0,5
1屆日	200	1600	400	2000	20f ^{1.0}	20f ^{1.0}
	200	1000	400	2000	201	201

計算点の加速度フーリエスペクトル*A*(*ω*)は、既報²のステップ 1,2と同様に Boore(1983)⁴に従い下式で評価した。

2000

3464

2600

2700

40f^{1.0}

70f^{1.0}

40f^{1.0}

70f^{1.0}

$$A(\omega) = S(\omega) \cdot Z(\omega)$$
(1)

$$S(\omega) = \frac{F_S \cdot R_k^S \cdot P_{RTITN}}{4\pi\rho V S^3} \left\{ \omega^2 \dot{M}(\omega) \right\}$$
(2)

$$Z(\omega) = \frac{1}{r} \exp\left(-\frac{\omega \cdot r}{2V s Q s}\right)$$
(3)

4000

6000

3層目

4層目(半無限)

1000

∞

 $S(\omega)$ は震源項、 $Z(\omega)$ は伝播経路による減衰項である。また ω は円 振動数、rは震源距離、 ρ は密度、Qsは伝播経路のS波のQ値であ る。Fsは観測点の地盤増幅係数、 P_{RTITN} は波動エネルギーを水平 2 成分に分割するための係数、 R_k^s はS波の放射特性係数である。モデ ν S31 と S32 は振動数一定の $R_k^s = 0.63^{4)}$ をSH波とSV波に共通に与 えた。S33 と S34 は Pitarka *et al.*(2000)⁵)による振動数依存の R_k^s を用 いた。具体的には震源から計算点直下の地震基盤を結ぶ波線方向に 対し、 $0\sim1$ Hz はSH波とSV波の理論値の R_k^s を、3Hz 以上は射出角 方向に±30 度、方位角方向に±60 度の範囲の R_k^s を平滑化した値を、 $1\sim3$ Hz は理論値の R_k^s から平滑化した R_k^s への遷移帯域とした。

 $\dot{M}(\omega)$ は Moment Rate 関数で、振幅スペクトルは下式で表示される (fは振動数、 $\omega=2\pi f$)。

(4)

$$\left|\omega^{2}\dot{M}(f)\right| = \frac{\omega^{2}M_{0}}{1 + (f/f_{C})^{2}}P(f, f_{\max})$$

(4)式の地震モーメント M_0 とコーナー振動数 f_c は、実際の地震の 平均的な値を与えることとした。ステップ3はステップ1と同一の $M_0=10^{18}$ Nm を与え、 M_0 と断層面積Sの関係式(Somerville et al., 1999⁶)、 $M_0<7.5\times10^{18}$ Nm の場合)からSを求め、Sに対する等価半径R と M_0 から Eshelby (1957)⁷⁾の式を用いて応力降下量 $\Delta\sigma$ 、更には Brune(1970)⁸⁾の式から M_0 と震源層のせん断波速度 Vs を用いてコー ナー振動数 f_c を与えた。以上の式から、S=107.5 km²、R=5.74 km²、 $\Delta\sigma=2.31$ MPa、Vs=3.464 km/s より、 $f_c=0.224$ Hz を得る。但し、こ こでは $f_c=0.2$ Hz として以後の計算に用いた。なお、断層パラメータ の設定に用いた式は既報²⁾に詳述されている。(4)式の $P(f, f_{max})$ は f_{max} によって高振動数成分の振幅を減少させるためのフィルター関 数であり、下式が与えられている。ここで、 $f_{max} = 6$ Hz、n は Boore(1983)⁴)に従い4とした。

$$P(f, f_{\max}) = \frac{1}{\sqrt{1 + (f/f_{\max})^{2n}}}$$
(5)

時刻歴波形の経時特性関数は Boore(1983)⁴⁾の w(t) を基本とし、(6)

式で与える。ここで *t* は時間、*H(t)*は unit-step 関数 (Heaviside-step 関数) を、*a*, *b*, *c* はそれぞれ(7)式のとおりである。

$$w(t) = at^{b}e^{-ct}H(t)$$

$$a = \left(\frac{5e}{T_{w}}\right)^{b}, \quad b = \frac{-\varepsilon\ln\eta}{1+\varepsilon(\ln\varepsilon-1)} \approx 1.25315, \quad c = \frac{b}{\varepsilon T_{w}} \approx \frac{6.2657}{T_{w}}$$
(6)

e は自然対数の底(2.718...)、 T_w は震源継続時間 T_d ($T_d=1/f_c$)を用いて $T_w=2$ T_d と表わされる。本モデルでは $f_c=0.2$ Hz より、 $T_w=10$ sを用いる。また Boore(1983)⁴⁾に従い、(7)式右辺の数字はe=0.2, $\eta=0.05$ の場合の値である。乱数位相の設定は(6)式の経時特性を満足し、有効周波数の帯域で(2)式の震源スペクトル振幅に最もよくフィットするものから 3 ケース選択する条件とした。SH 波と SV 波は異なる乱数位相を用いた。有効振動数は 0~20Hz の帯域とした。以上の条件のもと、時間刻み 0.01 秒の水平、上下成分の加速度時刻歴波形を20.48 秒計算した。

2.2 計算結果の相互比較

モデル S31 は既報²⁾のモデル S11 と解析条件がほぼ同一であるため掲載を割愛した。モデル S32 の点震源直上の点+000 について、各参加者による 3 つの異なる乱数位相を用いた結果の擬似速度応答スペクトルを図 2 に示す。モデル S32 は振動数一定の R^s_k (=0.63)を SH 波と SV 波に共通に用いている。しかも点+000 は点震源直上のため、地盤増幅率は SH 波と SV 波で同一である。従って図 2 に見られるスペクトル振幅の差異は、乱数位相による影響と考えられる。既報²⁾でも指摘したが、統計的グリーン関数法をサイト波評価に適用するには、複数の乱数位相に基づいて地震動を評価し、平均的な応答スペクトル振幅を与える乱数を選択するなどの検討が望まれる。

モデル S33 の点+000の擬似速度応答スペクトルを図3に示す。S32 との相違は振動数依存の震源の放射係数 R^{*}_kを考慮する条件が加わ ったことである。横ずれ断層を設定しているため、点震源直上の点 +000の振幅は理論上ゼロとなる。図2(b)と比べて周期約0.3 秒以降 のスペクトル振幅が小さくなるのは、振動数依存の R^{*}_kの影響である。 0.3 秒以下のスペクトル振幅も小さくなるのは、平滑化した R^{*}_kの値 が約0.3 となり、S32 で用いた0.63 より小さいためである。

以上は点震源と計算点の幾何学的関係から鉛直入射となる点 +000の結果を示した。本ベンチマークテストでは、既報²⁾に比べて 新たにSH波とSV波の基盤からの斜め入射を考慮した場合を設定し た。モデルS33では振動数依存のR^kに加え、斜め入射による地盤増 幅も計算条件となる。そこで各条件の事前確認が必要と考え、最終 結果の比較に先立って、震源の放射係数R^kと地盤増幅率を出力した。 最も入射角が大きくなる点+010(震央距離10km)を例にとり、各参加 者によるSH波とSV波のR^kを図4(a)に示す。0~1HzはR^kの理論値、 1~3Hz は遷移帯域、3Hz 以上は平滑化後の帯域である。3Hz 以上で SH 波のR^kが卓越するなど、振動数依存性も含めて参加者間の結果 は良く一致している。基盤からのSH波およびSV 波の水平・上下動 の地盤増幅率を図4(b)に示す。点+010はS 波の入射角が84°となり、 SV 波の臨界角(35°)を超える複雑な計算となるが、参加者間の結果 は一致している。3 つの異なる乱数位相を用いた場合について、各 参加者による EW 方向とUD 方向の加速度波形を図5に示す。図の 零秒は発震時に対応しており、(2)式の震源項のスペクトルに最も良 くフィットする波形から順番に番号(1~3)をつけている。S 波の立ち 上がり時間や、加速度振幅の包絡形など、各参加者の加速度波形は 概ね一致している。擬似速度応答スペクトルを図6に示す。応答ス ペクトルの振幅にやや違いが見られるが、震源からの放射係数 R^s_kと 地盤増幅率が参加者間で一致することから、この振幅の相違は乱数 位相の影響と思われる。

モデル S33 に対し、S34 では地盤モデルを2層から4層に変更し、

条件を更に複雑にした。計算点+000のEW成分を例にとり、擬似速 度応答スペクトルを図7(a)に示す。図3に示したS33の点+000と比 較すると、参加者間のスペクトル振幅が2倍以上大きくなっている。 モデルS34は4層地盤としたため、幾何減衰を考慮する地震基盤ま での距離が0.4kmとなり、モデルS33の距離(1.0km)と比べて1/2.5 と短いことがスペクトル振幅の差異の要因である。点+010のEW、 UD成分の結果を図7(b)に示す。図6に示したS33の計算点+010と 比較すると、上下方向のスペクトル振幅が小さくなるなど、参加者 間で共通の傾向が認められる。以上、ステップ3では様々な計算条 件を設定したが、上下動も含めて参加者間の計算結果は概ね一致し た。ただし、乱数位相の使用によるばらつきが常に存在している。

3. ステップ4(面震源)のベンチマークテスト

3.1 計算手法と計算条件

ステップ4 は表4 に示す4 通りのテストを実施した。S44 は各自 の独自手法による検討であり、久田が平行成層地盤の厳密なグリー ン関数³⁾を用いて参加した。モデルS41,42,44 の断層面と計算対象 地点を図8 に示す。断層面は鉛直右横ずれとし、基準点(0,0,2000)、 断層長さ8000m、断層幅4000m、断層すべり量1m、走向・傾斜角・ すべり角はそれぞれ(90°,90°,180°)に設定した。破壊は(0,1000, 4000)から一定の速度(*V*=3000 m/s)で同心円状に伝播し、破壊開始位 置は各小断層の中心に置く条件としている。小断層のサイズは1×1 km²とした。計算点は自由表面上のベクトル(x, y, z)=(6,8,0)に沿 う+000,±002,±006,±010(km)の7点とした。

(モデル S41、S42、S44)

ステップ4では $M_0 \approx 1.04 \times 10^{18}$ Nm と設定しており、断層の等価半径と Eshelby (1957)⁷⁾の式より $\Delta \sigma \approx 13.95$ MPa となる。ライズタイム τ は強震動予測レシピ(地震調査研究推進本部、2009)⁹⁾を参考とし、 断層幅 Wを破壊伝播速度 V,で除した値の半分($\tau = W/2V$,=0.67 s)とした。波形合成は Irikura(1986)¹⁰⁾、および、それを修正した横井・入 倉(1991)¹¹⁾に基づいて行う。横井・入倉(1991)¹¹⁾による方法では、大 地震と小地震の応力降下量の比が1の場合、断層全体の地震動U(t)は、小断層の地震動 $u_n(t)$ を用いて次式で表される。

$$U(t) = \sum_{i}^{N_{L}} \sum_{j}^{N_{W}} u_{ij}(t - t_{ij}) + \sum_{i}^{N_{L}} \sum_{j}^{N_{W}} \sum_{k}^{(N_{D}-1)n'} \frac{1}{n'} u_{ij} \{t - t_{ij} - \frac{(k - 1)\tau}{(N_{D} - 1)n'}\}$$

$$t_{ij} = \frac{r_{ij}}{Vs} + \frac{\eta_{ij}}{Vr}$$
(8)
(9)

ここで、tは時間、 t_{ij} は断層の破壊開始時刻から小断層の波が計算 点に到達するまでの時間、tはライズタイム、 $N_L \cdot N_W \cdot N_D$ はそれぞ れ断層の長さ方向・幅方向・すべり方向の分割数、r_{ij}は小断層から 波形計算地点までの距離、η_{ij}は断層の破壊開始点から小断層までの 距離、Vs はS波速度、Vr は断層の破壊伝播速度を表す。n'はすべり 方向の重ね合わせの際に生じる人為的な周期性を、有効周波数外の 高周波数側に移動させる再分割数である。

表4 ベンチマークテスト・ステップ4の検討ケース

	ステップ4(面震源)			
モデル名	S41	S42	S43	S44 [*]
地盤	2層地盤			
入射角	斜め入射			
Q值	あり			
震源	横ずれ断層		逆断層	横ずれ断層
ラディエーション	振動数(f)依存 任意			
(SH & SV)				
	一走	ランダム	一定	
有効振動数	0~20 Hz			
出力点	000, ±002, ±006, ±010(計7点)			
出力成分	水平・上下3成分			
乱数の設定	各自の乱数3パターン			

注*) S44はオプションケースで自由参加。

小断層の地震モーメント M_0 は 5.40×10¹⁵Nm であり、応力降下量は 大地震と同じ値($\Delta\sigma$ =13.95 MPa)とする。この場合、小断層の断層す べり量は約 0.167 m、 f_c =2.33 Hz から小断層の震源の継続時間 T_w は 0.86 s となる。 N_D はすべり量の比 (1 m/0.167 m) から N_D =6 を用い る。小断層のサイズ(1×1 km²)より、 N_L =8、 N_W =4 とした。以上の設 定は既報 ³と同一である。実際の計算に際しては、小断層を点震源 と見なした小地震を設定した。各小地震から P_{RTITA} =1 として SH 波 と SV 波を生成させ、それを X(NS)、Y(EW)の水平 2 成分に方位変換 した結果と、SV 波の斜め入射から励起される上下動を提出波形とし た。その際、(2)式の放射係数 R_k^s は 2 節で述べた振動数依存とし、 小地震ごとに SH 波と SV 波の R_k^s を変化させた。地盤条件は表 2 に 示す 2 層地盤を用い、SH 波と SV 波の斜め入射を考慮して各小断層 からの地盤増幅率を評価した。

乱数位相の設定はステップ3と同様に、小地震の震源スペクトル に最もよくフィットする3ケースを選択し、各々の乱数位相を断層 面全体について共通に用いた。SH 波とSV 波は異なる乱数位相を用 いた。有効振動数は0~20Hzの帯域とした。以上の条件のもと、時 間刻み0.01 秒の3方向の加速度時刻歴波形を20.48 秒計算した。

3.2 計算結果の相互比較

小地震の破壊開始時間を一定とした S41 モデルについて、破壊伝 播方向の+010(震央距離 10km)を例に取り結果を以下に示す。ここで 設定したモデルは、小地震から計算点に到る波線に沿って入射角が 変動するため、8×4=32 の小地震ごとに SH 波と SV 波の斜め入射を 考慮した地盤増幅率の計算を行っている。また、小地震から計算点 への射出角と方位角も変動するため、32 の小地震ごとに SH 波と SV 波の震源からの放射係数も振動数に依存させて変えた計算を行って いる。以上のように設定条件が複雑なため、各条件の事前確認が必 要と考え、震源の放射係数と地盤増幅率を前もって出力して確認し た。図8 に示す断層左端最浅部の小断層 1 と断層右端最浅部の小断 層 8 を例にとり、各参加者による放射係数、地盤増幅率を比較した 結果を図 9~図 10 に示す。小断層 1 と 8 では点+010 に対する放射 係数が符号も含めて大きく異なるが、参加者間の結果は一致してい る。地盤増幅率の結果も参加者間で整合するのを確認できた。3 つ の異なる乱数位相を用いた場合について、各参加者による EW 方向 と UD 方向の加速度波形を図 11 に示す。計算点+010 は破壊進行方 向に位置するため、継続時間が 2 秒程度の短い波形となっており、S 波の立ち上がり時間や包絡形は概ね一致している。擬似速度応答ス ペクトルルを図 12 に示す。周期約 2 秒の卓越が共通に見られるなど、 参加者間の計算結果は対応しているが、EW 成分の 0.5~1 秒付近な ど、ばらつきが大きい周期帯もある。

小地震における破壊開始時間の周期性を避けるため、モデル S42 では小地震の破壊開始時間にランダムな変化を導入した。破壊開始 時間のゆらぎは人工的な卓越周期を回避することを確認したが、こ の結果は既報²⁾で議論しているため掲載を割愛する。

モデル S44 は横ずれ断層を対象としたオプションケースであり、 久田が参加した。震源スペクトルは(2)式の Boore(1983)⁴⁾を用いるが、 グリーン関数は波数積分法を用いて理論的に計算するのが特徴であ る³⁾。震源スペクトルのフーリエ位相は 1Hz 以下で零位相、1~3Hz は遷移帯域、3Hz 以上はランダム位相を与えている。なお、3Hz 以 上の放射係数は SH 波と SV 波とも R^s_k=0.63 としており、短周期側の 計算条件は異なっている。点+010 の EW 方向と UD 方向の擬似速度 応答スペクトルと加速度波形を図 13 に示す。1 秒以上は図 12 のモ デル S41 と解析条件が同一である。その帯域でスペクトル振幅を比 較すると、2 秒周辺が卓越するなどの共通点が見られる。しかしな がら、S44 の 3 秒以上の上下動スペクトルは S41 に比べて大きくな り、図 13(c)の上下動波形の後半にも周期の長い波動が見られる。S44 は厳密なグリーン関数を用いているため、長周期側の相違は浅い震 源による表面波の影響と考えられ、震央距離が長くなると両者の差 がより顕著になると考えられる。この点は浅い震源に統計的グリー ン関数法を適用する場合の限界であり、理論的なグリーン関数を長 周期側で用いるハイブリッド法の適用が望まれる¹⁾。

S43 は図 14 に示す逆断層を対象とした。この断層モデルは Day et al.(2003)¹²⁾を踏襲しており、断層面の 4 隅(①~④)を図 14 のように 与えた。断層長さを 6000m、断層幅を 6000m、断層すべり量を 1 m

とし、走向・傾斜角・すべり角はそれぞれ(115°, 40°, 70°) に設定した。破壊は(0,0,6000)から一定の速度(V_r =3000 m/s)で同心円状に伝播し、破壊開始位置は各小断層の中心に置く条件とした。 M_0 =1.17×10¹⁸ Nm と設定したため、 $\Delta \sigma \Rightarrow$ 13.15 MPa となる。小断層の地震モーメント M_0 は 5.40×10¹⁵ Nm であり、応力降下量は大地震と同じ値($\Delta \sigma$ =13.15 MPa)とする。この場合、小断層の断層すべり量は約 0.167 m、 $f_c \Rightarrow$ 2.28 Hz から小断層の震源の継続時間 T_w は 0.88 s となる。 N_D はすべり量の比(1 m /0.167 m)から N_D =6 を用いる。小断層のサイズ(1×1 km²)より、 N_L =6、 N_W =6 とした。ライズタイム τ は地震調査研究推進本部(2009)⁹⁾を参考とし、断層幅 W を破壊伝播速度 V_r で除した値の半分($\tau = W/2V_r$ =1.0 s)とした。

震源直上の計算点+000を例にとり、EW 方向と UD 方向の擬似 速度応答スペクトルを図 15 に示す。参加者間の結果は上下動の対 応は良いものの、水平動の長周期側においてばらつきがみられ、乱 数位相の影響がより顕著になっている。SH 波と SV 波の放射係数 の符号は理論的な値を用いて統一しているが、小地震の時刻歴波形 の正負は乱数位相の影響により変化する。従って SH 波と SV 波の 時刻歴波形の符号により、方位変換後の NS 方向と EW 方向の振幅 は異なり、長周期側のばらつきの原因となっている。なお、SH 波 と SV 波の最大値の符号を強制的に統一させると、このばらつきは 減少することを確認している。

4. まとめ

点震源および面震源を対象とし、振動数依存の震源の放射係数や斜 め入射による地盤増幅率の考慮など、既報²⁾に比べてより複雑な条 件でベンチマークテストを実施した。各条件の事前確認が必要と考 え、震源の放射係数と地盤増幅率を出力したところ、参加者間の結 果は良く対応した。一方、応答スペクトルの計算結果は概ね一致し たが、やや違いが見られる周期帯もあり、乱数位相の影響と思われ る。統計的グリーン関数法をサイト波評価に適用する際は、複数の 乱数位相に基づいて地震動を評価し、平均的な応答スペクトル振幅 を与える乱数を選択するなど、手法としての制約も理解した上で用 いることが重要である。なお、本研究の全ての結果は下記ホームペ ージに公開されている。ベンチマークテストは理論的手法と数値解 析手法についても実施されている^{13,14}。

http://kouzou.cc.kogakuin.ac.jp/benchmark/index.htm

謝辞

本プロジェクトは文部科学省・科学研究費・基盤研究(B)「設計用入力地 震動作成のための強震動予測手法の適用と検証」(代表:久田嘉章、平成 21-23 年度)の研究助成で行われ、日本建築学会地盤震動小委員会(元主査:加藤研 一、現主査:久田嘉章)、および工学院大学・総合研究所・都市減災研究セン ターとの連携のもとに行われました。課題の設定や結果のまとめ方に際して 永野正行・吉村智昭・青井真・早川崇・川辺秀憲氏にご協力いただきました。

参考文献

- 1) 日本建築学会:最新の地盤震動研究を活かした強震波形の作成法, 2009.
- 2)加藤研一・久田嘉章・川辺秀憲・大野晋・野津厚・野畑有秀・森川淳・山本優:強震動予測手法に関するベンチマークテスト:統計的グリーン関数法の場合(その1)、日本建築学会技術報告集,第17巻、第35号, 49-54, 2011.
- Hisada, Y.: Broadband strong motion simulation in layered half-space using stochastic Green's function technique, *Journal of Seismology*, 12, No.2, 265-279, 2008.
- Boore, D. M.: Stochastic simulation of high-frequency ground motion based on seismological models of the radiated spectra, *Bulletin of Seismological Society of America*, 73, 1865-1894, 1983.
- Pitarka, A., P. Somerville, Y. Fukushima, T. Uetake and K. Irikura: Simulation of near-fault strong-ground motion using hybrid Green's functions, *Bull. Seis. Soc. Am.*, 90, 566-586, 2000.
- 6) Somerville, P.G., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada: Characterizing crustal earthquake slip models for the prediction of strong ground motion, *Seismological Research Letters*, **70**, 59-80, 1999.
- Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems, *Proceedings of the Royal Society*, A241, 376-396, 1957.
- Brune, J.N.: Tectonic stress and the spectra of seismic shear waves from earthquake, J. Geophys. Res., 75, 4997-5009, 1970.
- 9) 地震調査研究推進本部・地震調査委員会: 付録 震源断層を特定した地震の強震動予測手法(「レシピ」), 2008. http://www.jishin.go.jp/main/p_hyoka.htm
- Irikura, K.: Prediction of strong acceleration motions using empirical Green's function, *Proc. 7th Japan Earthq. Eng. Symp.*, 151-156, 1986.
- (11) 横井俊明・入倉孝次郎: 震源スペクトルの Scaling 則と経験的グリーン関数、地震、44,109-122,1991.
- 12) Day, S. M., J. Bielak, D. Dreger, S. Larsen, R. Graves, A. Pitarka, K. B. Olsen: Tests of 3D Elastodynamic Codes, *Final Report to Pacific Earthquake Engineering Research Center, Lifelines Program TASK 1A02*, 1-32, 2003. http://www-rohan.sdsu.edu/~steveday/BASINS/Final_Report_1A02.pdf
- 13) 久田嘉章・永野正行・野津厚・宮腰研:強震動予測に関するベンチマー クテストー理論的手法の場合(その1)、日本建築学会技術報告集、第17 巻、第35号、43-48、2011.
- 14) 吉村智昭・永野正行・久田嘉章・青井真・早川崇・Seckin Ozgur Citak・ 松島信一・大西良広: 強震動予測に関するベンチマークテストー数値解析 手法の場合(その1)、日本建築学会技術報告集、第17巻、第35号、67-72、 2011.

[2011 年 6 月**日原稿受理 2011 年*月*日採用決定]