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A Theoretical Method for Computing Near-Fault Ground Motions in

Layered Half-Spaces Considering Static Offset Due to Surface Faulting,

with a Physical Interpretation of Fling Step and Rupture Directivity

by Yoshiaki Hisada and Jacobo Bielak

Abstract An efficient mathematical method is presented for computing the near-
fault strong ground motions in a layered half-space, giving explicit consideration to
the static offset due to surface faulting. In addition, the combined effects of “fling
step” and “rupture directivity” on the near-fault ground motions are investigated.
First, after checking the fault integration in the representation theorem, it is found
that when an observation point is close to the fault plane, Green’s functions exhibit
near singularities, which consist of extremely sharp peaks in a narrow band close to
the observation point. Therefore, direct numerical integration becomes quite onerous
for computing near-fault ground motions, because the dynamic Green’s functions
must then be distributed very densely in order to evaluate accurately the effects of
the near singularities. Instead, a new form of the representation theorem is introduced,
which exploits the property that the dynamic Green’s functions can be approximated
by the corresponding static Green’s functions in the vicinity of the singularities. The
modified theorem, which involves the device of adding and subtracting the static
Green’s functions from the dynamic ones, is the sum of two fault integrations. The
first integration involves the difference of the dynamic and the corresponding static
Green’s functions, while the second contains only the static Green’s functions. This
formulation requires much less CPU time than the original one when near-fault
ground motions are considered, because the near singularities of the dynamic Green’s
functions in the first integration are completely eliminated by subtracting the static
Green’s functions. While the second integration does require a densely distributed
set of points to capture the near-singular behavior of the static Green’s function, it
needs to be performed only once, as it is valid for all frequencies. Subtraction of the
static Green’s functions from the dynamic functions has the added benefit of making
the integration over the wavenumber in the determination of the Green’s functions
much more efficient, especially for surface faulting. This is because the difference
of the dynamic and static integrands converges rapidly to zero with increasing wave-
numbers, whereas the original integrands diverge in the case of a source point on the
free surface.

The proposed methodology is used to investigate the two most important effects
in near-fault ground motions, fling step (e.g., Abrahamson, 2001) and rupture direc-
tivity (e.g., Somerville et al., 1997), by paying special attention to the contribution
of static and dynamic Green’s functions. It is found that the fling effects stem mainly
from the second integral in the modified representation theorem, which involves the
static Green’s function. The fling effects are dominant in the slip direction only in
the vicinity of the surface fault and are negligible for buried faults, because the static
Green’s function attenuates rapidly with distance from the fault, r, as the order of
(1/r2). Also, more importantly, when an observation point is located above a buried
fault, the medium has to remain continuous, and thus cannot “fling.” By contrast, the
directivity effects stem mainly from the first integral, which involves the dynamic
Green’s function, and attenuate much more slowly than the fling, on the order from
1/r to . The directivity effects are dominant in the fault-normal direction, especially1/ r�
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in the forward rupture direction, not only for the surface fault, but also for the buried
fault. Due to the combined effects of fling and directivity in the vicinity of the surface
fault, the directions of the maximum velocities and displacements are inclined with
respect to the fault plane. On the other hand, when softer surface layers are added to
the medium, the directivity effects become more significant than the fling effects,
because the dynamic Green’s functions are more pronounced than the static ones.

Introduction

Recent large-scale inland earthquakes, especially the
1999 Chi-Chi earthquake of Taiwan and the 1999 Kocaeli
earthquake of Turkey, dramatically demonstrated the strong
effects of surface faulting on near-fault ground motions (e.g.,
Shin and Teng, 2001). The effects of surface faulting due to
tectonic deformations have been recently called “fling step”
(e.g., Abrahamson, 2001). In contrast to “rupture directivity”
effects, which show the long-period pulses in the direction
normal to the fault plane (e.g., Aki, 1968; Archuleta and
Hartzell, 1981; Somerville et al., 1997), the fling effects ex-
hibit long-period pulses and permanent static offsets in the
direction of the fault slip. In particular, when the fault rup-
ture reaches the free surface, the faulting slip and the sub-
sequent ground motions are strongly amplified (e.g., Archu-
leta and Frazier, 1978). Thus, the combination of fling and
directivity can have destructive effects on various lifeline
facilities and long-period structures, such as high-rise or
base-isolated buildings, in the vicinity of the surface fault.

As an example, Figure 1a,b shows the location of the
surface faults of the 1992 Landers earthquake and the strong
motion at a station in the Lucerne Valley. The station is
located in the vicinity of the surface fault (about 2 km away;
e.g., Chen, 1995) and in the forward direction of the fault
rupture. Figure 1c,d shows the fault-normal and -parallel
components of the observed velocity and displacement, re-
spectively. The records clearly show the “forward directivity
pulse” in the fault-normal component (i.e., the long-period
pulse in velocity and the smaller static offset in displace-
ment) and also the fling step in the parallel component (i.e.,
the long-period pulse in velocity and the large static offset
in displacement). Interestingly, because of the combined ef-
fects of directivity and fling, the directions of the maximum
velocity and displacement are inclined to the surface fault at
about 45�, as shown in Figure 1b.

In this article, we propose an efficient method for sim-
ulating these near-fault ground motions using an extended
kinematic source. Even though various numerical methods
have been available to reproduce the near-fault ground mo-
tions considering the surface faulting (e.g., Archuleta and
Frazier, 1978; Oglesby and Day, 2001; Ramancharla and
Meguro, 2001), analytical methods based on the represen-
tation theorem remain a useful and powerful tool. As far as
the analytical Green’s functions are concerned, earlier stud-
ies used to assume simple media, such as the homogeneous
full-space (e.g., Aki, 1968; Haskell, 1969) or the homoge-

neous half-space (Kawasaki et al., 1973; Kawasaki, 1975;
Anderson, 1976; Levy and Mal, 1976). Nowadays, one can
readily obtain those of flat-layered half-spaces (e.g., Bou-
chon, 1979; Apsel and Luco, 1983; Luco and Apsel, 1983;
Hisada, 1993, 1995). However, in order to compute the near-
fault ground motions in a layered half-space considering sur-
face faulting accurately, we need to overcome two main ob-
stacles related to the singularity of Green’s functions.

We shall first describe these obstacles using the analyt-
ical method. The displacement due to a kinematic fault
model can be expressed as follows in the frequency domain:

U (Y;x) � T (X,Y;x)D (X;x)dR, (1)k ik i�
R

where Uk is the kth component of displacement in the Car-
tesian coordinate system at an observation point, Y, x is the
circular frequency, X is a source point on the fault plane,
and R is the fault plane. The Tik is the traction Green’s func-
tion, and Di is the ith component of the fault slip; we use
the summation convention for subscript i. The Green’s func-
tion of the layered half-spaces is obtained using the follow-
ing wavenumber integration:

�

T (X,Y;x) � t (X,Y;x,k)dk, (2)ik ik�
0

where tik is the integrand of the traction Green’s function.
When the observation point is located on the fault plane, the
Green’s functions become singular as the order of (1/r2).
However, in that case, the fault integration in equation (1)
can be evaluated analytically considering Cauchy’s principal
value if the material is homogeneous, and its value is half of
the slip (e.g., Kane, 1994). On the other hand, when the ob-
servation point is not on the fault plane but very close to it,
Green’s functions become nearly singular, that is, their am-
plitudes show sharp peaks in a narrow area close to the ob-
servation point. Therefore, the first obstacle is the need to
distribute Green’s functions very densely on the area close to
the observation point in order to evaluate the fault integration
numerically. This means that a large amount of CPU time is
required when the dynamic Green’s functions of layered half-
spaces are used (e.g., Kawasaki, 1975). In addition, when we
assume a surface fault, we need to calculate numerous
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Figure 1. (a) Map of California with the site location; (b) the surface faults and the
epicenter of the 1992 Landers earthquake, together with the location of the observation
station at the Lucerne valley; (c) the velocities; and (d) the displacements at the station.
Panel (b) also shows the direction of the strike slip, the directions of the fault-normal and
-parallel components, and the directions of the maximum velocity and displacement.

Green’s functions with shallow source points. Therefore, the
second obstacle is that the integrands of wavenumber inte-
grations (equation 2) do not converge with wavenumber
when the depths of source points are close to or on the free
surface (e.g., Apsel and Luco, 1983; Hisada, 1993, 1995).
In particular, the convergence is extremely slow in the case
of the static Green’s function (x � 0). Therefore, special
techniques are needed to overcome the two obstacles.

The purpose of this article is to propose a mathematical
methodology for computing near-fault ground motions ef-
fectively and to use it for investigating the effects of fling
and directivity in several simple situations. We first carefully
check the fault integration (equation 1) using the simplest
fault model: an axially symmetric circular fault in a homo-
geneous full-space. Based on the results from this simple
case, we will then propose a new form of the representation
theorem for calculating the fault integration efficiently for
more general cases, involving arbitrary kinematic faulting
models in layered half-spaces. In addition, we propose an
efficient method for calculating the wavenumber integration
(equation 2), considering the surface faulting. Finally, we
check the validity of the proposed method and investigate
the physical basis of the fling and directivity effects.

Efficient Methods for Computing Near-Fault Ground
Motions in Layered Half-Spaces

Near-Fault Ground Motions Using an Axially
Symmetric Fault Model in a Homogeneous
Full-Space

We first check the basic characteristics of the dynamic
and static Green’s functions in the fault integration (i.e.,
equation 1) to find efficient ways for computing the near-
fault ground motions. In this section, we use the simplest
fault model, that is, the axially symmetric circular fault
model in a homogeneous full-space. In addition, we will
check the attenuation relation of the static offset using this
model.

Figure 2 shows the fault model and the location of an
observation point. R is the radius of the circular fault model.
We assume a uniform slip, D, over the fault plane. The ob-
servation point is located at a distance, z, above the center
of the fault. The dynamic displacement, U, in the same di-
rection as D, is easily obtained by substituting Green’s func-
tion of the homogeneous full-space (e.g., Kane, 1994) into
equation (1),
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Figure 2. An axial-symmetric fault model in ho-
mogeneous full-space. An observation point is lo-
cated above the center of the circular fault.

Figure 3. The near-singular behaviors of the in-
tegrands of equations (3) and (8) for observation
points at (a) z � 1 m and (b) z � 10 m. The solid
and dotted lines are the static and dynamic (f �
10 Hz) integrands, respectively, and the dashed line
is the value for which the static integrand was sub-
tracted from the dynamic integrand.

R 2zD r r
U(z,x) � 2u � u dr, (3)1 2� 3 � � � �4 0 f f

where D is the fault slip, and

2 2f � r � z , (4)�

2 2u � fv � r w , u � 2(f v �2fv), (5)1 ,f 2 ,f

2s p3 3 e p 3 3 e
v � � � 1 � � � 1 ,� 2 � � � � 2 �s s f s p p f

29 9 4 s p 9 9 4 ps pv � � � � � 1 e � � � � � 1 e , (6),f � 3 2 � 2 � � � 3 2 � 2s s s f s p p p f

23 3 2 s p 3 3 1 ps pw � � � � � 1 e � � � � e ,,f � 3 2 � 2 � � � 3 2 � 2s s s f s p p p f

s � ixf/V , p � ixf/V . (7)s p

For the static case, equation (3) reduces to

2RzD r r
U(z) � 2(1 � 2�) � 3 dr, (8)� 3� � � �8(1 � �) 0 f f

where � is the Poisson ratio. Note that since the system is
axially symmetric, the fault integrations of equations (3) and
(8) are one-dimensional along the r axis in the range from
0 to R. When z is directly on the fault (i.e., z � 0), the
integrals in equations (3) and (8) can be evaluated analyti-
cally by using Cauchy’s principal values, and their value is
half of the slip (e.g., Kane, 1994),

D
U(z � 0, x) � . (9)

2

On the other hand, when z is much larger than R, equa-
tion (8) can be approximated as

21 � 2� R
U(z) � D , (R K z). (10)� �8(1 � �) z

Note that the static displacement attenuates as the inverse
of z2.

Figure 3 shows the integrands of equations (3) and (8)
as a function of r using a fault model with R � 10 km and
D � 1 m for the two cases of (a) z � 1 m and (b) z �
10 m. The material properties of the medium are Vs � 3
km/sec, Vp � 5 km/sec, and the corresponding � is 0.2188.
The real parts of the dynamic integrands of equation (3) are
plotted in dotted lines for a frequency of 10 Hz, while the
static integrands of equation (8) are shown in solid lines.
The left figure in Figure 3a shows the integrands from r �
0 to 10,000 m for the case of z � 1 m. Even though we
normalized their amplitudes by their maximum values, these
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Figure 4. The attenuation relation of the static
displacement using a circular fault model with R �
10 km and D � 1 m in homogeneous full-space. The
displacement is nearly constant from 0 to 1 km of z
(one-tenth of the fault radius) and attenuates reversely
proportionally to the second power of z, when z ex-
ceeds about 5 km.

amplitudes can barely be seen. The right drawing in Figure
3a shows the same integrand as on the left, except that the
integration range has been narrowed to the interval from 0
to 30 m. The spikelike sharp peaks of the integrand then
become apparent over an extremely narrow range close to
r � 0 m and quickly decrease with r. This makes it clear
that in order to evaluate the integrals, close attention must
be paid to these spikes. Otherwise, the computed amplitude
of the displacements near the fault will be in error and far
too small. By using a dense distribution of integration points,
both equations (3) and (8) give 0.500 m, which is half of the
slip, as expected from equation (9). Note that the dynamic
integrands in the dotted lines are almost identical to the static
ones in the solid lines. Therefore, when we subtract the static
integrand from the dynamic integrand, as shown by the
dashed line, the values become nearly zero.

Similarly, Figure 3b shows the integrands for z � 10 m.
The left figure depicts the integrands from r � 0 to
10,000 m, and the right is the same integrands except for the
range of 0–300 m. Again, the near singularities with sharp
peaks occur in both the static and dynamic (10 Hz) inte-
grands in a narrow band around r � 10–30 m. The values
of the integrations are 0.499 and 0.489 m for the static and
the dynamic cases, respectively. Similarly, since the near
singularities are nearly the same for the static and the dy-
namic cases, the value of their difference becomes a smooth
function, with the spike removed, as shown by the dashed
line. Therefore, we can eliminate the near singularities of the
dynamic integrand by subtracting the static integrand.

Next, we shall evaluate the attenuation of the static dis-
placement. Figure 4 shows the attenuation relations using
equations (8) and (10) for the same values of R and D as
before (i.e., R � 10 km and D � 1 m). When z is very close
to the fault plane, the value of displacement obtained from
equation (8) is about half that of the slip, 0.5 m, as shown
in equation (9). The displacement remains nearly constant
with z up to about 1 km, around one-tenth of R. It then starts
to decrease with increasing z, on the order of 1/z. Once z
exceeds about half the radius, the displacement starts to at-
tenuate as the order of (1/z2). Therefore, equation (10) then
becomes a good approximation, as seen in Figure 4.

An Efficient Method for Computing Near-Fault
Ground Motions in a Layered Half-Space

On the basis of the results for the circular fault, we shall
propose an efficient method for carrying out the fault inte-
gration of the representation theorem for more general cases,
that is, arbitrary kinematic faulting models in layered half-
spaces. As shown previously, when the observation point is
close to the fault plane, the dynamic traction Green’s func-
tions exhibit sharp peaks within the area close to the obser-
vation point. However, subtracting and adding the static
Green’s functions can eliminate the singularities of the origi-
nal Green’s function. Thus, we propose the following rep-
resentation theorem, instead of equation (1):

SU (Y;x) � {T (X,Y;x) � T (X,Y)}D (X;x)dRk ik ik i�
R

S� T (X,Y)D (X;x)dR,ik i�
R

(11)

where Tik is the traction Green’s function of the layered half-
space at circular frequency, x, and is the static tractionSTik

Green’s function of the layered half-space (x� 0). Addition
and subtraction of singular integrands is common when deal-
ing with integral evaluations or integral equations (e.g., Ap-
sel and Luco, 1983; Colton and Kress, 1983; Hisada, 1993,
1995).

Equation (11) consists of two fault integrations. The first
integration corresponds to the dynamic Green’s function, in
which the sharp peak of the original Green’s function has
been eliminated by the subtraction of the static Green’s func-
tion. Hence, to evaluate the integral over the fault, we can
locate the integration points coarsely at regular grid nodes
on the fault plane, even when the observation point is very
close to the fault. Also, the first integration indicates that the
attenuation of the slip function, Di, is governed by the dy-
namic Green’s functions, which consist of body and surface
waves. Thus, their amplitudes decay on the order of 1/r to

(r is the distance from the fault to the observation point).1/ r�
On the other hand, the second integral in equation (11)

involves the static Green’s function. To perform this fault
integration, we have to distribute the integration points
densely in the area close to the observation point in order to
incorporate the contribution from the sharp peak. The CPU
time required for computing the static function, however, is
much less than for the corresponding dynamic function. And
more importantly, since the values of the static functions
remain invariant for all frequencies, these functions need to
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Figure 5. The contour deformation for evaluating
the second integration of equation (13), which cor-
responds to the static Green’s function.

be evaluated only once. The second integral describes the
attenuation of the slip function due to the static traction of
the Green’s functions. Thus, their amplitudes would be ex-
pected to decrease rapidly, on the order of 1/r2 beyond a
certain distance from the fault, as indicated in Figure 4.
While we could have chosen some alternative singular func-
tions to remove the singularity from the dynamic Green’s
function, we have used the static Green’s functions both for
mathematical convenience and for the physical insight into
the fling step and rupture directivity phenomena one gains
from their use.

Efficient Methods for Calculating the Dynamic
and Static Green’s Functions When the Depth of
Source Point is Equal or Close to the Depth of
Observation Point

Next, we address another problem that arises when one
computes the Green’s functions of layered half-spaces, con-
sidering surface faulting. As mentioned earlier, when the
depth of the source is the same as or close to the depth of
the observation point, the integrand of the wavenumber in-
tegration of equation (2) diverges with increasing wavenum-
bers. There are several techniques to remedy this problem,
both for the dynamic and static cases (see, e.g., Hisada,
1993). We will adopt the most appropriate methods for com-
puting the two integrals in equation (11).

One of the most efficient methods for dealing with the
divergent integrand of the dynamic Green’s function is to
introduce an asymptotic solution of the integrand at large
wavenumbers, which is equivalent to the static function.
This technique was originally introduced by Apsel and Luco
(1983), who used the integrand of the static Green’s function
of the homogeneous full-space to approximate the dynamic
function of layered half-spaces. Later, Hisada (1995) im-
proved the method by introducing an approximate analytical
static solution of the layered half-space, which results in a
more rapid convergence.

To evaluate the integral of the first integrand of equation
(11), we can use the following wavenumber integrations in-
stead of equation (2), since the dynamic Green’s functions
are already subtracted by the static Green’s functions:

ST (X, Y;x) � T (X,Y)ik ik (12)
�

S� {t (X,Y;x,k) � t (X,Y;k)}dk,ik ik�
0

where tik(X,Y;x) and are the integrands of the dy-St (X,Y;x)ik

namic and static traction Green’s functions, respectively.
Since the dynamic integrand converges exactly to the static
integrand with increasing wavenumber, the integrand of
equation (12) attenuates rapidly, even if the depth of the
source point is equal to the depth of the observation point.
Note that the expression on the right side of equation (12)
is of the same form as that used by Apsel and Luco (1983)
or Hisada (1993, 1995). However, here we adopt the static

Green’s functions of the actual layered system, which guar-
antee the fastest convergence.

On the other hand, to evaluate the static Green’s func-
tions of a layered half-space in the second integration of
equation (11), we employ the contour deformation method,
which is a well-known technique for evaluating the wave-
number integration efficiently (e.g., Levy and Mal, 1976).
Greenfield (1995) applied this technique to evaluate Green’s
function for the case in which the depth of a source point is
close or equal to that of an observation point. This method
is more appropriate than the asymptotic method for the static
case because the approximate asymptotic solutions, such as
the static Green’s function of the homogeneous space or His-
ada’s solution (Hisada, 1995), do not converge efficiently to
the integrand of the static Green’s function, due to the infi-
nite wavelength. In order to introduce the contour defor-
mation, we first divide the integration range into two parts,
as shown in Figure 5,

�

G(z,r) � g(z)J(kr)dk�
0 (13)

kA �

� g(z)J(kr)dk � g(z)J(kr)dk,� �
0 kA

where G(z,r) is an arbitrary Green’s function, z is the depth
of the source or observation points, r is the horizontal dis-
tance between the source and observation points, g(z) de-
notes the motion-stress vectors of z (e.g., Aki and Richards,
1980; Hisada, 1993), and J(kr) is the Bessel function of the
first kind. The corner wavenumber, kA, can be arbitrary, but
it must be larger than the wavenumbers corresponding to the
branch points and the poles in the dynamic case. For the
static case, since there are no branch points or poles, an
arbitrary small value is possible, such as kAr � 1 or 2.

The second integrand of equation (13) diverges with
increasing k when the depths of the source and observation
points are close. Thus, we shall introduce the contour de-
formations (Greenfield, 1995). We first replace the Bessel
function by the Hankel functions, as follows:

� �1 (1)g(z)J(kr)dk � g(z) {H (kr)� �
kA 2 kA

(2)� H (kr)}dk, (14)
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where H(1) and H(2) are the Hankel functions of the first and
second kinds, respectively. Next, we expand the real wave-
number k to the complex wavenumber and apply Cauchy’s
theorem. For the integration of H(1), we carry out the contour
integration along the contour ABD in Figure 5. The integral
on BD vanishes by Jordan’s lemma, as k goes to infinity.
Moreover, since H(1) decreases exponentially on the path
AB, we can terminate the integration on AB at a suitable
point B� on that path. Therefore, the integration can be ap-
proximated as

�
(1) (1)g(z)H (kr)dk � g(z)H (kr)dk .i� �

kA AB�
(15a)

Similarly, we carry out the contour deformation for the in-
tegration of H(2) along the contour ACD in Figure 5. We
then terminate the integration range at C�:

�
(2) (2)g(z)H (kr)dk � g(z)H (kr)dk .i� �

kA AC�
(15b)

The numerical integrations in equations (15a) and (15b) can
be readily carried out, since both integrands converge
quickly to zero with increasing ki. Therefore, the sum of
equations (15a) and (15b) gives accurate values for the sec-
ond integral of equation (13).

Miscellaneous Techniques for Calculating Strong
Motions Including Permanent Offset

We will now provide some additional details on the
computation of Green’s functions, the numerical integra-
tions, and the calculation of the near-fault ground motions,
including static offsets.

Among various available methods for computing the
dynamic and static Green’s functions of layered half-spaces,
we use the method by Hisada (1993), which is modified from
Luco and Apsel (1983). This is an appropriate method for
this study, as it is completely free from the numerical insta-
bilities at lower and higher frequencies through the intro-
duction of the R/T (reflection/transmission) matrix. In ad-
dition, it gives the static solution explicitly (Luco and Apsel,
1983).

For the wavenumber integrations of the dynamic
Green’s functions in equation (12), which include the poles
and the branch points, we use Simpson’s and Filon’s quad-
ratures for small and large wavenumbers, respectively
(Olver, 1964). On the other hand, for the integrations of the
static Green’s functions in equations (13) and (15), which
involve smooth integrands, we use an adaptive Newton–
Cotes quadrature.

With regard to the fault integration in equation (11), we
divide the fault plane into rectangular subfaults and use
Gaussian quadrature in each subfault. For computing the first
(dynamic) integration in equation (11), we use a variable
number of Gaussian points, up to 6 � 6, to keep at least six

points per wavelength. On the other hand, for computing the
second (static) integration in equation (11) when an obser-
vation point is close to a subfault, we divide the subfault into
smaller subfaults and redistribute Gaussian points to evalu-
ate the near-singularity of the static Green’s function; we
repeat this process until the value of the integration con-
verges within a prescribed tolerance.

The static offset of displacement is calculated as fol-
lows. Since the Fourier amplitude of a steplike displacement
is infinite at 0 Hz, we first compute velocities in the fre-
quency domain, transforming them into the time domain.
Then, we calculate the corresponding displacements by in-
tegrating the velocities numerically in the time domain. To
check the accuracy of the calculated static offset, we recall
that the Fourier amplitude of velocity at 0 Hz is the same as
the value of the static offset in the time domain, since the
static offset is the displacement as the time goes to infinity.

Numerical Examples

Strike-Slip Model with Surface Faulting in a
Homogeneous Half-Space

We shall first check the basic characteristics of the near-
fault ground motion using a simple strike-slip model with
surface faulting (see Fig. 6). We compute the near-fault
ground motions using the proposed representation theorem
(equation 11) from 0 Hz up to 10 Hz. As shown in Figure
6a, we use the 12 observation points on the free surface
along a line perpendicular to the fault plane. Point 1 is
0.1 km away from the center of the surface fault, and point
2 is 0.5 km away. Similarly, points 3–12 are 1.5–10.5 km
away from the fault at 1-km intervals. Because of the sym-
metry of the model and the pure strike slip, the fault-normal
components are zero, and the vertical components are neg-
ligible compared to the fault-parallel components. As shown
in Figure 6b, the maximum slip of the fault is 1 m, including
the shallowest subfaults which break the free surface, and
tapers at both edges and at the bottom of the fault. The slip
velocity function is an isosceles triangle with a 1-sec dura-
tion, as seen in Figure 6c. The rupture velocity is infinite.
We use the homogeneous half-space with the physical prop-
erties of q � 2.5 g/cm3, Vp � 5 km/sec, Vs � 3 km/sec,
Qp � 200, and Qs � 100.

Figure 7 shows the velocities (Fig. 7a) and displace-
ments (Fig. 7b) of the fault-parallel components. Both panels
include three sets of waves on the line; the left and middle
waveforms correspond to the dynamic and static terms,
which stem from the first and second integrals in equation
(11), respectively. The rightmost panels represent the sums
of the two terms. When observation points are close to the
fault (e.g., points 1 and 2), we see the strong fling effects,
that is, the large pulse in velocities and the large static offsets
in displacement. These consist mainly of static terms, with
little contribution from the dynamic terms. Since the static
terms decay rapidly with distance from the fault, the fling
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Figure 6. (a) Strike-slip model with surface faulting and 12 observation points;
(b) the slip distribution; and (c) the slip velocity function.

Figure 7. (a) Velocities and (b) displacements of the fault-parallel components at
12 observation points in Figure 6, using the first (dynamic; left), second (static; center),
and total (right) integrations of equation (11).

effects disappear for observation points away from the fault
(e.g., points 11 and 12). By contrast, the dynamic terms be-
come dominant far from the fault. Note that the static ve-
locities are always isosceles triangles, which correspond to
slip velocity function with attenuation (see Fig. 6c).

To check the attenuation relations of the dynamic, static,
and total terms with distance, Figure 8 shows the relation
between r (the distance from the fault) and the maximum
amplitudes of the velocities (Fig. 8a) and displacements
(Fig. 8b). In each panel, the thin black lines, the thick gray
lines, and the thick black lines correspond to the dynamic,

static, and total terms, respectively. In addition, the dashed
line in Figure 8b represents the Fourier amplitudes of veloc-
ity at 0 Hz, which agrees with the thick gray line, that is, the
values of the static offset. This demonstrates the validity of
the results, as explained in the previous section. For small
r, the static terms are dominant over the dynamic ones, and
the maximum amplitudes are about half of the slip function,
that is, 100 cm/sec in velocity and 50 cm in displacement.
As the distance becomes large, say, 2–5 km (one-fifth to one-
half of the fault dimension), the static terms decrease as
1/r2. By contrast, since the dynamic terms are attenuated on
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Figure 8. Attenuation relations of the maximum amplitudes in (a) velocities and
(b) displacements using the dynamic, static and total waves; 100 cm/sec in velocity
and 50 cm in displacement are the half of the slip velocity and the slip. In panel (b),
since the maximum displacements of the static terms (i.e., the permanent offsets) and
the Fourier amplitudes of velocities at 0 Hz show almost same values, there are no
differences in the figure.

Figure 9. Dip-slip model with surface faulting in
homogeneous half-space. The dip angle is 45�, and
the other source parameters are the same as Figure 6.

the order of 1/r to they become dominant over the static1/ r,�
ones at distances greater than 2–5 km. Therefore, the fling
effects, which correspond to mostly the static terms, are
prominent only in the vicinity of the fault (or asperity size).

Dip-Slip Model with Surface Faulting in a
Homogeneous Half-Space

Next, we shall check the near-fault strong motions using
a dip-slip model with surface faulting. As shown in Figure
9, the dip and rake angles are 45� and 90�, respectively. The
other source and medium parameters are the same as for the
previous model (see Fig. 6). We locate 14 observation points
on the free surface along the line perpendicular to the fault;
points 1–7 are located on the footwall side, and points 8–14
are on the hanging-wall side. The points closest to the fault
are points 7 and 8, which are at 0.1 km away from the surface
fault trace.

Figure 10a,b shows the fault-normal and up–down com-
ponents, respectively, of the velocities at the 14 observation
points. Similarly, Figure 10c,d shows the corresponding dis-
placements. As in the previous example, the waves in the
left and middle panels in each set are the dynamic and static
terms, respectively, and the right waves are the sum of the
two. Compared with the waves on the footwall (points 1–7),
the waves on the hanging wall (points 8–14) show large
amplitudes, especially in the up–down components. When
observation points are close to the fault, the static terms are
dominant over the dynamic ones, and we see strong fling
effects. As the observation points get farther from the fault,

the static terms are quickly attenuated and the dynamic ones
become dominant.

Fling versus Directivity Effects Using Surface
and Buried Fault Models

We now examine the effects of the fling step and the
rupture directivity on the near-fault strong motion for strike-
slip models. As shown in Figure 11a,b, we consider both a
surface fault model and a buried fault model. As previous
studies have indicated, the depth of the top of the fault would
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Figure 10. Velocities (a,b) and displacements (c,d) in the fault-normal (a,c) and
up–down (b,d) directions at 14 observation points in Figure 9, using the dip-slip model,
and the first (dynamic; left), second (static; center), and total (right) integrations of
equation (11). The horizontal line indicates the location of the surface fault.

be one of the most important parameters controlling the
near-fault ground motions (e.g., Anderson and Luco, 1983a,
1983b; Luco and Anderson, 1983). Most source parameters
are the same as in Figure 5, except that now the rupture
velocity has a finite value of 2.5 km/sec; this gives rise to
directivity effects. The location of the hypocenter is shown
in the figure, halfway down the fault. The depth of the top
of the buried fault is 2 km, as shown in Figure 11b. We
locate 13 observation points at 1-km intervals on the line
parallel to the fault plane at a distance of 0.1 km. Thus,
observation points 1 and 13 are in the backward and forward
directions of the rupture front, respectively.

Figure 12 shows the results of the surface fault model,
where panels (a) and (b) are the velocities of the fault-normal
and fault-parallel components, respectively, and panels (c)
and (d) are the corresponding displacements. As before, the
left, middle, and right waves in each figure are the dynamic,
static, and total contributions, respectively. In the fault-
normal components, we see the growth of the directivity
pulses in the forward direction of the rupture front, which
consist mostly of the dynamic terms. The contribution of the
static terms is minor. By contrast, we see fling waves in the
fault-parallel components; these consist of the static terms
and are dominant only at the observation points next to the
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Figure 11. A strike-slip model with (a) surface
fault and (b) buried fault in homogeneous half-space.
The source parameters are the same as Figure 6, but
with Vr � 2.5 km/sec.

fault plane (i.e., points 3–11 in Fig. 12). The contributions
of the dynamic terms are negligible.

Figure 13a,b depicts the velocities and Figure 13c,d the
corresponding displacements for the buried fault model. No-
tice that the scales of the amplitudes are about half of those
in Figure 12. From these figures we can see that the fault-
normal components, which are mostly the dynamic waves,
exhibit a clear forward directivity effect. On the other hand,
the fling waves disappear in this model. As explained before,
the fling consists mainly of static Green’s functions, which
attenuate more quickly than the dynamic ones. And, more
importantly, when an observation point is located next to a
surface fault, the slip dislocation directly “flings” the adja-
cent ground in the slip direction. However, when an obser-
vation point is located above a buried fault, the slip dislo-
cation cannot fling the ground, because the medium is
continuous above the fault.

In order to further illustrate the combined effects of fling
and directivity on the near-fault ground motion,Figure 14
shows the vectors of the maximum velocities on the free
surface using the surface fault (Fig. 14a) and the buried fault
(Fig. 14b), as shown in Figure 11a,b. Again, the amplitude
scale for the buried fault is about half of that for the surface
fault. In both models, fault-normal components grow in the
forward rupture direction (the left side of the figures). In
particular, the normal components are dominant in the vi-
cinity of the buried fault. By contrast, we also see large am-
plitudes in the fault-parallel components near the surface
fault in Figure 14a. Therefore, because of the comparable
amplitude of fault-parallel and fault-normal components, the
directions of the maximum velocities are inclined with re-
spect to the fault plane in the vicinity of the surface fault. In
particular, the fault-parallel components are larger than the
normal in the area close to the epicenter. As mentioned in
the Introduction, the direction of the maximum velocity re-
corded at Lucerne Valley was inclined to the fault plane (see
Fig. 1b). This phenomenon probably occurred by the com-

bined effects of fling and directivity. On the other hand, the
fault-normal components become dominant for observation
points further away from the surface fault, especially in the
forward directivity direction.

Effects of Sedimentary Layers on Near-Fault
Ground Motions

Finally, we shall add sedimentary layers to the surface
fault model to check the effects of layering on the near-fault
ground motions. Table 1 shows the material properties of
the layered half-space, in which we have added two sedi-
mentary layers to the homogeneous half-space. We use the
same strike-slip model with surface faulting as that shown
in Figure 11a. Bouchon (1979) examined the effects of lay-
ering using a model with a single layer and a strike-slip fault
and found that the amplification was much larger in the fault-
normal component than in the parallel-fault component.

Figure 15a,b shows the three components of velocities
and displacements, respectively, at the same observation
points shown in Figure 11a. Compared with the results of
the homogeneous medium shown in the total waves of Fig-
ure 12, the fault-normal components show larger amplitudes
and longer durations, especially in the forward rupture di-
rection. This is because the fault-normal components are
mostly the dynamic terms, that is, the body and surface
waves, and they are amplified in the sedimentary layers. For
the fault-parallel components, which are represented mostly
by the static terms, the waveforms and amplitudes are nearly
the same as those of the homogeneous medium.

Concluding Remarks

In this article, we first examined a simple circular fault
model (Fig. 2) with the objective of developing efficient
methods for computing near-fault strong ground motions.
From these simple examples, we have made some important
observations. When an observation point is close to the fault
plane, the integrands of the fault integrations exhibit near
singularities, that is, sharp peaks in the narrow area close to
the observation point, as seen in Figure 3. Therefore, in order
to obtain accurate values of the integrations without further
modification, integration points need to be distributed very
densely in the area. However, subtracting the integrand of
the static Green’s functions can eliminate the near singular-
ity of the dynamic Green’s function. We also found that the
static displacement (the permanent offset) attenuates rapidly
on the order of 1/r2 at distances larger than a fraction of the
radius R, as shown in Figure 4.

On the basis of these observations, we have proposed
a new form of the representation theorem, described by
equation (11), from which one can compute the near-fault
ground motions in layered half-spaces much more efficiently
than with the original equation (equation 1). The proposed
theorem entails two fault integrations; the first consists of
the difference between the dynamic Green’s function and
the corresponding static Green’s function, and the second
consists of the static Green’s function. In the first integration,
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Figure 12. Velocities (a,b) and displacements (c,d) in the fault-normal (a,c) and
-parallel (b,d) directions at 13 observation points in Figure 11a, using the first (dynamic;
left), second (static; center), and total (right) integrations of equation (11).

the near singularities of the dynamic Green’s functions are
completely eliminated by the subtraction of the static
Green’s functions. Therefore, we can carry out numerically
the first integration by distributing the integration points on
regular grids that consider only the target wavelength. As
for the second fault integration, the integration points need
to be distributed very densely in the area close to the obser-
vation points in order to evaluate the near singularities. How-
ever, the required computations are small, because (1) the
static Green’s functions are much simpler than the corre-
sponding dynamic ones and, more importantly, (2) the com-
putation for the static Green’s functions needs to be per-

formed only once; these are then used for all frequencies. It
should be noted that the proposed representation theorem is
meant to be used only for observation points that are near
the fault. Since the near singularities of the dynamic Green’s
functions disappear as the distance between the observation
point and the fault increases, it is unnecessary to introduce
the static Green’s functions.

We also proposed efficient methods for computing the
dynamic and static Green’s functions of layered half-spaces
in the case of a surface fault. Since the depths of source
points are on or close to the free surface in this case, the
integrands of the wavenumber integration in equation (2) do
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Figure 13. Velocities (a,b) and displacements (c,d) in the fault-normal (a, e) and
-parallel (b,d) directions at 13 observation points in Figure 11b, using the first (dynamic;
left), second (static; center), and total (right) integrations of equation (11).

not converge. In order to carry out the wavenumber integra-
tion of the dynamic Green’s function in the first fault inte-
gration in equation (11), we use equation (12); its integrand
quickly attenuates with the wavenumbers. For the static
Green’s function of the second fault integration in equation
(11), we use the contour deformation method (Greenfield,
1995), as shown in equations (14) and (15). The resulting
integrands then have an asymptotic exponential decay and
can be easily integrated numerically.

Next, we computed the near-fault ground motions using
various idealized models and drew the following conclu-
sions. First, we found that the fling step stems mainly from

the second fault integral in equation (11), which is the con-
volution of the fault slip and the static traction Green’s func-
tion. Their amplitudes are dominant in the slip direction in
the vicinity of surface faults and are negligible for buried
faults. This is because the static Green’s function quickly
attenuates with distance, on the order of 1/r2. In addition,
when an observation point is located above a buried fault,
the medium has to remain continuous, and thus cannot fling.

On the other hand, we found that the directivity pulse
mainly stems from the first integral in equation (11), which
is the convolution of the fault slip and the dynamic Green’s
function. Directivity effects are dominant in the fault-normal



A Theoretical Method for Computing Near-Fault Ground Motions in Layered Half-Spaces 1167

Figure 14. Vectors of maximum velocities on the free surface for the (a) surface
and (b) buried faults. In the case of the strike-slip fault, the effects of “fling” and
“directivity” can been seen in the components of the fault parallel and the normal,
respectively.

Table 1
The Material Properties of the Layered Half-Space

Density Vp Vs Thickness
(t/m3) (km/sec) (km/sec) Qp Qs (km)

2.2 3.0 1.0 100 50 1
2.4 4.0 2.0 150 75 1
2.5 5.0 3.0 200 100 –

direction, especially in the forward rupture direction, not
only for the surface fault, but also for the buried fault. They
attenuate much more slowly than the fling, on the order from
1/r to . Therefore, the fault-normal components are1/ r�
much larger than the fault-parallel components, especially
for the buried fault, as shown in Figure 14b. In the vicinity
of surface faulting, the combined effects of directivity and
fling cause the directions of maximum velocities to become
inclined, as shown in Figure 14a. This probably explains the
direction of the maximum velocity recorded at Lucerne Val-
ley, as shown in Figure 1b.

Also, we investigated the effects of softer surface layers
using the same fault model and found that the softer layers
amplify mainly the directivity pulses, but not the fling steps.
This is because the body and surface waves of the dynamic
Green’s function are excited more strongly in the softer lay-
ers than in the static one. In actual situations, however, the
existence of softer layers may not only increase the faulting

slip, but also change the slip function itself. The results of
dynamic faulting models, laboratory tests, and/or source in-
versions deduced from strong motion records should be in-
corporated into future work to model slip functions of sur-
face faults more appropriately.

Finally, we offer the Fortran code of this method for
public use. Please contact the first author for information on
how to obtain and use the code.
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