首都直下地震を対象とした 強震動予測手法に関するベンチマークテスト

ーその1:都心南部地震を対象とした 統計的手法を用いた強震動予測-

2015年度日本建築学会大会(関東) 2015年9月5日(土)

〇久田嘉章・石川理人(工学院大学)野畑有秀(大林組)、山本優(大成建設)眞鍋俊平(応用地質)

協力:長坂陽介(港湾空港技術研究所)

工学院大学

AHISADA

ベンチマークテスト概要

近年、強震動予測手法はレシピ等によって体系化されつつある。しかし、 用いる計算手法により得られる結果には差異が生じる場合がある。 →同条件(地盤・震源)で様々な計算手法の結果を比較し、適応範囲や ばらつきを確認する。また、その結果を強震動予測手法のベンチマー キングとしてHPにデータを公開する。

代表的な強震動計算手法

・統計的手法 (統計的グリーン関数など) ⇒(その1)、(その2) ・理論的手法 (波数積分法、薄層法など) → (その3)

・数値解析手法 (差分法、有限要素法など) 」 →

2009年~2011年

HISADA

STEP7(実地震)

対象地震:千葉県北西部地震(2005)

震源モデル:纐纈・三宅モデル(2006)

深部地盤モデル 地震調査研究推進本部(2009) ※低速度層は上層に置き換え(下図)

表層地盤モデル

K-NET・KiK-net・UR都市機構・建築研究所・ 株式会社鴻池組・戸田建設株式会社より提 供頂いたボーリングデータ ※モデル統一のためVs=500m/sまでを使用

AHISADA

統計的手法(ステップ7)

モデル名	SS71	SS72
対象地震	2005年千葉県北西部地震	
地盤	関東平野の3次元深部地盤モデル (長周期地震動予測モデル、2009試作版)	
入射角	射角観測点直下の地震基盤まで直線入射、堆積層へは鉛直入射裏源点震源(纐纈・三宅,2005等をもとに策定)时特性S波の一様分布(放射係数は0.63)	
震源		
放射特性		
波動	SH波	
振動数	対象は0~20Hz(0.05秒以下)。但し計算は25 Hzまで。	
出力成分	水平2成分(2組の乱数使用)	任意

・M₀=5.8x10¹⁷ Nm(Mw5.8)の点震源を仮定、震源モデルはBoore(1983)、

・fmax=13.5Hz fc=0.635Hz SBFac=1.332 (震源層と地震基盤のインピーダンス比より)

・経時特性関数は佐藤・他(1994a)。

 $A(\omega) = S(\omega) \times P(\omega) \times SBFac$

$$S(\omega) = \frac{F_{S} \cdot R_{k}^{S} \cdot P_{RTITN}}{4\pi\rho V_{S}^{3}} \{\omega^{2} \dot{M}(\omega)\}$$
$$P(\omega) = \frac{1}{r} exp\left(-\frac{\omega \cdot r}{2V_{S}Q_{S}}\right)$$

·Q值 (内閣府)

(1) Vs>3000m/s : Q=100f^{0.7}

2 500m/s<Vs<3000m/s : Q=100f^{0.7}

③ Vs<500m/s:Q=35 (一定)

	X. 9		4. 皮が世世に比較地	2711
提出者	久田	眞鍋	長坂	土伯野氏
Мо	F-net (Mo=9.11×10^17)	F-net (Mo=9.11×10^17)	(Mo=9.39×10 ¹⁷)	(その2)
fc	0.75	0.55	0.75	
震源メカニズム	SS71と同様	(strike,dip,rake)=(8,64,101)	(strike,dip,rake)=(179,18,82)	
震源座標	SS71と同様 N:35.582° E:140.138° D:70km	SS71と同様 N:35.582° E:140.138° D:70km	気象庁 N:35.5692°E:140.1342°D:68km	
包絡関数	sato / boore	Boore(1983)		
表層地盤	Vs=500m/s以深の ボーリングデータを使用 (KIK-netなど)		サイト増幅特性:野津・長尾(2005) サイト位相特性:本震以前の 中小地震記録から算定	
深部地盤				
その他		Vs=4.7km/s ρ=3.2 g/cm3 (全国1次地下構造モデル(暫定版)) 伝播経路のQ値: Q(f)=114f^0.9 (佐藤・巽(2002)) ただし Q=114 (F<1 Hz)(一定)	震源付近の地盤p=3.2g/cm3(推本2012) Vs=4.6km/s(推本2012) 伝播経路 Q=100f ^{0.7}	_
				工学院大学 KOGAKUIN UNIVERSITY

0

90

0

 3.51×10^{19}

<u>Strike(°)</u> Dip(°)

地震モーメント(Nm)

Rake(

HISADA

ステップ8(想定直下地震)

STEP8						
対象地震	都心南部直下地震					
モデル名	SS81(必須)	SS82(任意)	SS83(必須)	SS84(任意)		
入射角	鉛直	鉛直/斜め	鉛直	鉛直/斜め		
震源	点震源					
地盤	内閣府	任意	内閣府	任意		
放射特性	S波の一様分布 (放射係数は0.63)	任意	S波の一様分布 (放射係数は0.63)	任意		
波動	SH波	SH,SV波	SH波	SH,SV波		
減衰	振動對		k 依存			
振動数	対象は0~20Hz(ただし、		計算は25Hzまで行	う。)		
出力点	25点(K-NET、KIK-NET、UR都市機構、 会社鴻池組のデータより設定)		建築研究所、戸田建 必須13点、任意12	書設株式会社、株式 点とする。		
出力成分	水平2成分	水平、鉛直3成分	水平2成分	水平、鉛直3成分		
出力波形	工学的基盤 (入射波)	(地表面 表層の増幅を考慮			

ステップ8の参加チーム一覧

参加者	久田·石川	野畑	山本	眞鍋*
SS81	0	0	0	0
SS83	O**	0	0	0

* 地殻モデルは笠原(1985)の球殻モ デルを使用し、波線を計算

** 要素地震波の重ね合わせ手法は、 大西・堀家(2004)を使用

(基準は入倉ほか(1997))

工学院大学

AHISADA

図:加速度波形とフーリエ振幅スペクトル

AHISADA

まとめ

・統計的手法による強震動計算のベンチマークテスト

・震源パラメータ・地盤モデル・手法を指定した基準モデルと改善モデ ルで結果の比較検討。基準モデルであれば参加者の結果は実用上、 ほぼ一致するが、位相特性・包絡関数・波線・Q値・要素地震波の重ね 合わせ手法の際により、波形性状・応答スペクトル等の結果に差異が 顕著になる。

・観測波形との比較では、推本モデル(2009)では関東平野・深層地盤の増幅率を過小評価。経験的増幅率が最も有効。

データ公開

ベンチマークテストHP: kouzou.cc.kogakuin.ac.jp/benchmark.htm ※STEP8の詳細やデータについても掲載予定(今年度中)

謝辞

本研究は日本建築学会・地盤震動小委員会・UR都市機構・戸田建設と連携し、また文部科学省 科学研究費補助金・基盤研究Bさらに工学院大学・都市減災研究センターによる助成をいただい ています。また、本研究の一部は民間7社((株)安藤・間、(株)熊谷組、佐藤工業(株)、戸田建設(株)、西松建設(株)、(株)フジタ、前田建設工業(株))による共同研究「南海トラフ・相模トラフの巨 大地震による長周期地震動に関する研究(平成26~27年度)の助成により実施されました。 なお、K-NET・KIK-NETの観測波形を使用させていただいております。