

Computing cases Verification: – 3D (up to 4 Hz): pure elastic / visco-elastic (Q-factor)
3 layers with homogenous properties / gradient based model • different excitation. Officient source.
2D (up to 10 Hz):

pure elastic / visco-elastic / "fully" non-linear,
7 layers / 3 layers / gradient based model,
different excitation. different excitation. • Validation: - 3D (up to 4 Hz): • 6 different earthquakes (visco-elastic, 3 layers model).

An "iterative" work in 3 phases, with many interaction and discussion:

one "Kick-off Meeting" (may 2008)
3 intermediate workshop (nov. 2008 - may 2009 - oct. 2009)
one final meeting (june 2010)
allow fruitful discussions
better iteration and convergence between results
a better definition of the needed computing cases of the following phase

			Contributing institutions		
CUB 3D01		FDM	Comenius Univ. Bratislava	Bratislava	Slovakia
UJF 3D02		SEM	Université Joseph Fourier	Grenoble	France
DPRI 3D03		FDM	Disaster Prevention Res. Inst.	Kyoto	Japan
OGS 3D04		PSM	Istituto Nazionale di Oceanografia e Geofisica Sperimentale	Trieste Italy	
NIED 3D05		FDM	Natl. Res. Inst. for Earth Science and Disaster Prevention	Tsukuba	Japan
CEA 3D06		DEM	Commissariat à l'Energie Atomique	Bruyères Le Chatel	France
CMU 3D07		FEM	Carnegie Melon Univ.	Pittsburgh USA	
UNICE 3D09		DGM	Université de Nice Sophia Antipolis	Valbonne	France
			Applied Methods		
FDM	Finite-difference method				
SEM	Spectral-element method				
PSM	Pseudo-spectral method				
DEM	Discrete-element method				
FEM	Fir	nite-elen	nent method		
DGM	Di	scontinu	ous Galerkin method		

	-	methods (all 2nd-order in time)		
		characterization	attenuation	ABC
CUB	FDM	finite-difference, 4th-order velocity-stress volume arithmetic and harmonic averages of density and moduli, respectively arbitrary discontinuous staggered grid	GZB 4 rel. mechanisms	CPML
UJF	SEM	spectral-element, Legendre 4th-order polynomial Gauss-Lobatto-Legendre integration	GZB 3 rel. mechanisms	Lysmer & Kuhlemeyer
DPRI	FDM	finite-difference, 4th-order velocity-stress non-uniform staggered grid	linear Q(f) f ₀ = 2 Hz	Clayton & EngquistA1 + Cerjan
OGS	PSM	Fourier pseudospectral, vertically stretching staggered grid	GZB 3 rel. mechanisms	CPML
NIED	FDM	finite-difference, 4th-order velocity-stress discontinuous staggered grid	linear Q(f) f ₀ = 2 Hz	Clayton & Engquist A1 + Cerjan
CEA	DEM -SEM	hybrid discrete-element – spectral element, Voronoï particles (6 dof - 3 in translation, 3 in rotation), 2nd-order	hysteretic damping	Lysmer & Kuhlemeyer
CMU	FEM	finite-element, tri-linear elements, octree-based discontinuous mesh	Rayleigh att. in the bulk	Lysmer & Kuhlemeyer
UNICE	DGM	discontinuous Galerkin, 2nd-order polynomial	n.a.	CPML

		P		
Mo	del configurations for t	he vertically	impinging pla	ne SV wave
ID	sediments	bedrock		
	geometrical heterogeneity	rheology	geometrical heterogeneity	rheology
l1a	n.a.	n.a.	homog.	elastic
l1b	3D heterog. (3 irreg. homog. layers)	viscoelastic	homog.	elastic

		Ta	ble of su	bmitte	d solutio	ons		
	CUB FDM	UJF	DPRI FDM	OGS PSM	NIED FDM	CEA DEM	CMU FEM	UNICE
l1a	1	1		~				
I1b	1	1		1				
I2a	1	1	1	1	1	1		
1111	1	1	1	1	1		1	1
12c	1	1	1	~	1	1	~	1
I2b	1	1	1	1	1	1	1	
IV2	1	1	1	1	1			1
IV1	1	1		1	1			

