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Finite-element Simulation of Seismic Ground Motion
with a Voxel Mesh
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Abstract— Accurate simulation of seismic ground motion for three-dimensionally complex topogra-
phy and structures is one of the most important goals of strong motion seismology. The finite-element
method (FEM) is well suited for this kind ol simulation, since traction-free conditions are already included
in the formulation, and the Courant condition is less strict than for the finite-difference method (FDM).
However, the FEM usually requires both large memory and computation time. These limitations can be
overcome by using a mesh consisting of voxels (rectangular prisms) with isotropy built into the explicit
formulation of the dynamic matrix equation. Since operators in the voxel FEM are the combinations of
ordinary FDM operators and additional terms, the method keeps accuracy of the same order as FDM and
the terms relax the Courant condition. The voxel FEM requires a similar amount of memory and only
takes 1.2 ~ 1.4 times longer computation time. The voxel mesh can be generated considerably faster than
the popular tetrahedral mesh. Both ground motions and static displacements due to a point or line source
can be calculated using the voxel FEM approach. Comparisons with the reflectivity method and theoretical
solutions demonstrate the successful implementation of the method, which is then applied to more complex
problems.
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Introduction

Accurate simulation of seismic ground motion for three-dimensionally complex
topography and structures (sedimentary basin, fault zone, subduction zone, etc.) is
one of the most important goals of strong motion seismology. In this ficld, the finite-
difference method (FDM: e.g., OLSEN ef al., 1995; GRAVES, 1996; FURUMURA et al.,
1998) has been more popular for many years than the finite-element method (FEM:
e.g., Bao er al., 1998; KoMATITSCH and VILOTTE, 1998), though FEM has inherent
advantages over FDM as follows: (1) FEM solutions satisfy the free-surface
condition directly, since the basic equations of the FEM are derived using the
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traction-free condition at the outer boundary of a medium. (2) The Courant
condition for time integration is less strict than FDM because of additional accuracy
of the FEM discretization. (3) FEM can handle very complex structures with high
accuracy using elements with various shapes.

As a reason for the popularity of FDM, it can be thought that FDM usually
requires much less computer memory and a shorter computation time than FEM.
In addition, the pre-process of FEM, i.e., mesh generation, can be very time-
consuming. For example, BAO et al. (1998) carried out an explicit FEM
simulation with 13 million nodes in the San Fernando valley requiring 16 GB
memory and 7.2 hours (16,667 steps) on 256 processors of Cray T3D. The mesh
generation required 7.7 GB memory and spent 13 hours on a DEC 8400. On the
hand, OLSEN et al. (1995) carried out a FDM simulation with 23 million nodes in
the Los Angeles region using 2 GB memory and 23 hours (about 5,000 steps) on
512 processors of nCUBE 2. A Cray T3D with 256 processors is thirty times
faster than an nCUBE 2 with 512 processors (TOP500, 1994), and so this
computation time corresponds to only 2.6 hours for 16,667 steps on a Cray T3D,
though the Los Angeles mesh includes almost twice more nodes than the San
Fernando valley mesh.

In order to overcome these limitations of the FEM, we introduce a mesh
consisting of voxels and derive an explicit formulation of the dynamic matrix
equation assuming isotropic media. ‘Voxel’ is a term in computer graphics derived
from an abbreviation of ‘volume pixel.’ It is actually a hexahedron or rectangular
prism in three dimensions (3-D) and its cross section forms a pixel in two dimensions
(2-D). The voxel mesh can be generated as easily as in FDM and reduces the
complexity of the FEM formulation as already shown in engineering applications
(e.g., VAN RIETBERGEN et al., 1996). We lose the flexibility of element shape, so that
the third advantage of FEM is lessened to some extent in this voxel FEM approach.
However, the voxel formulation still achieves accuracy of a similar order to that of
FDM keeping the advantages (1) and (2).

We will present here a voxel-mesh approach to the finite-clement simulation of
seismic wave propagation and ground motions. The efficiency of this approach
will be shown by comparing its results with those by FDM or semi-analytical
methods.

FEM Formulation
The displacement #; and stresses 7;; due to a body force f; in an clastic medium ¥ of
density p are governed by the equation of motion

(’)zui 61,-/
Pﬁ—a—xj‘Ffi (1)
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in Cartesian coordinates (x;) = x. If the outer boundary S of V' is a free surface so that
the surface traction 7; vanishes (Fig. 1), the weak form of this equation is given by

Pu; o, Ouy,
lo—dV + | —LCjjpy—dV = LAV, 2
/u,p o 4 ax; " o a /u,f d )

where u] is a trial function and Cjy, are elastic moduli of V.
We introduce a mesh with nodes at x* into the medium ¥ and assume that we can
represent u; at the position x by

ui(x) = Y NH(x) ot (3)
k

using the shape functions N*. If N* interpolates the displacement in a finite element
of ¥ between nodes, u¥ now stands for the displacement of the node at x*. We then
adopt N* for the trial functions ; following the Galerkin approach to the method of
weighted residuals, so that Equation (2) is discretized as

d*s

M—+ Kb = 4

S+ K6 =f, 4
where 4 is the displacement vector consisting of u¥ and fis the effective force vector.
The mass matrix M and stiffness matrix K are given by

M= / N'pNdvV K= / B'DBav. (5)

%

Figure 1
Displacement u; and stresses 7;; due to a body force f; in an elastic medium ¥ of density p and moduli Cij.
Surface traction T; acts on the outer boundary § of ¥ (after UbDIAS, 1999).
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The matrices D, N and B are built from Cyyy, N* and the derivatives of Nk,
respectively. In the case of an attenuative medium, a term including dé/dr is
introduced into the matrix equation (4) as

d’s dé

M— —+ Ko =

dr? B dt i f (©)

where C is the damping matrix associated with the attenuation.
Substituting the second-order central differences for d28/d? and backward

differences for dd/dt, we obtain the explicit FEM formulation

5! i ‘st—At

Orrar — 20, + 0;—ps s t v K6, =f (7)

(Aty? A

where 8, = 6(¢) and f; = fz).

We use the lumped mass approximation to M, which amounts to lumping the
mass of a finite element on its vertices as p(x) = p*6(x — x¥). This results in the
diagonalization of M, so that the matrix inversion M~ is not necessary and Orra CAN
be calculated by only matrix-vector multiplications in Equation (7). KOMATITSCH
and Tromp (1999) performed exact diagonalization of the mass matrix using
irregular spacing based on the Legendre polynomials, however we choose a piecewise
regular spacing giving priority to easy mesh generation. Since the nodal coordinates
of the clements can be easily calculated, they need not be memorized for our
piecewise regular spacing.

Voxel Elements

In this section we will explain the structures of the matrices and how to calculate the
recursive Equation (7) in the voxel FEM. For simplicity we will show only the details of
a 2-D plain-strain model (P-SV model), although, the extension to a 3-D model is
straightforward except for the complexity associated with the increase of dimension.
Since the Earth is approximated well with a layered model, we may divide the medium
into several domains and assume a regular distribution of voxels in each domain.

If a domain has only a single voxel element with an area of AxAz and constant
density and moduli, there are four nodes and the element displacement vector

=" o o u), o =@t db). (8)
The element version of B in Equation (5) consists of four 3x2 submatrices as
‘B=(B', B’, B, BY) 9)

and D is a 3x3 matrix. Therefore, the element stiffness matrix has the form

°K=(k"™), k™= /0 g /0 AZ(B”‘)TDB”dxdz. (10)
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Figure 2

A target node and four voxel elements surrounding it.

The above definition guarantees the symmetry k™ = k™ to °K. If the domain is
isotropic and the shear strain is defined as y,.j:Ze,-jzc’)u,-/axj+8uj/8xi, the
modulus matrix D has the simple form
A+2u A 0
D= 2 A+2u 0. (11)
0 0 U

We now adopt the bi-lincar Lagrange interpolation functions

 Ax—xAz—z N2 = B
T A& Az T A Az Ax Az’ T AxAz
for the shape functions. These D and N make the whole ¢K symmetric, and £™ is also
symmetric or skew-symmetric. All the elements of °K are polynomials of
(Az/Ax)*' (A +2u)/6, 4/4 and u/4. We can exploit these symmetry and simplicity
of ¢K for an isotropic medium in order to reduce memory requirement and
computation time of the voxel FEM simulation.

We next consider a domain with a 7 x J mesh. If the shape functions N* are
localized in a single element, the integral of the stiffness matrix K in Equation (5) can
be partitioned as

x Az—z s Ax—xz 4 X Z

Nl

(12)

()
K= > /eBTDeBdeV. (13)
e=(1,1)
We then assume the node (i, ) to be a target (Fig. 2). Since this node is shared by the
four voxel elements surrounding it, the corresponding element of the vector Ko is
given by the algebra

(K51)U —(=1j=1) gAli-ly-1 + ((i—l.j—l)k42 +(.'J'—1) k3l)uu—1 T (14)
When a target node is located on the outer boundary of the domain, some of the

surrounding elements and nodes are missing. In such a case, £™ of a missing element
and u* of a missing node will be set to be zero.
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Similarly, the definition in Equation (5) and the shape functions in Equation (12)
yield the element matrix of lumped mass *M = pAxAz/4 - I, where I is an 8x8
identity matrix, and so the elements of M@, are simply calculated by

(Mé6,)Y = pAxAzu'V. (15)

Most of the elements of f; are equal to zero, but those at the nodes, to which body
forces are applied, have non-zero values. We introduce the Rayleigh damping
approximation ‘C = a°M + °K to the medium attenuation (see e.g. CLOUGH and
PENZIEN, 1975). The parts of Cd, proportional to K8, and M8, can be calculated by
Equations (14) and (15), respectively. Accordingly, the substitution of Equation (15)
for the first term, of Equation (7) yields the recursive procedure

2
w5 = 2u — ":'-{m + p(i—x?iz [ — (Ko)Y — A%(C((S, = 0-an)V|, (16)
where (K&,)™ will be given by Equation (14). We will calculate (C(6; - 6,—a:))™ from
Equations (14) and (15) replacing Y with u}"j — u:‘i o
If we can assume constant density and moduli as well as regular spacing in a
domain, the element matrices are common for all the finite elements of the domain
and so we need memorize only representative matrices. This domain modeling will
significantly reduce the memory requirement of the voxel FEM.

Accuracy

We have shown in the preceding sections that the Galerkin FEM discretization of
the weak form of the governing equation (1) with a voxel mesh results in the recursive
procedure of Equation (16). However, this equation looks too complicated and it is
difficult to compare by sight its accuracy in space with that of FDM. Thus we extract
Ouy /Ox and du,/Ox from Jt;;/dx; in Equation (1) and discretize it for the comparison
with the second-order difference in space. Since the results for Ou,/0x and du,/0x will
be identical, we represent u, or u, just with « in this section.

The weak form of du/dx and the linear shape functions (12) yield

Ax  rAz n
= 0"), j“"z/o /0 N’”agc dx dz, (17)

where °J; is the part of ¢K related to du/0x. After similar algebra to Equations (10)
and (14) we obtain

v _ _ i—14-1 H+1j-1 _ i—1
(Jx0;) ¥ STL 3
+Azui+l.j_Azui—1.j+l+Azui+1‘i+1‘ (18)

3 12 12
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The integration in Equation (17) implies that du/dx is averaged over a single element,

and so Ou/dx is approximated with (J,8,)" divided by the element area AxAz. This
approximation and the arrangement of the terms in Equation (18) lead to

@Nl[z 1 (u Y — =)

ox 3|7 2Ax
1 [t g gitl=1 =1yl | gi=l-1
“'E( : - - )] (19)

The first term of the above equation is identical to the second-order (three-point)
difference operator of du/x used in FDM. »*'Y and 'Y in this term are the
displacements at the two nodes neighboring the target (i,;) along the horizontal
axis. Four displacements w/t!1v+1, it1/=1 4=1J+1 and 41V~ are also given at the
nodes distributed along the two neighboring axes. In the second term, the mean
of w*+'Y+! and u*'v=!1 approximates #*'v, and a similar mean approximates u'~!.
These means also form a second-order difference operator. Accordingly, the FEM
operator of du/dx consists of the second-order FDM operator and its approx-
imation calculated from the displacements at the nodes surrounding the target.
They are averaged with a half weight to the latter, and the accuracy of the FEM
operator is supplemented by additional accuracy from the latter. This additional
accuracy will relax the condition of Ar for numerical stability as shown in the
section 2-D verification.’

We now evaluate the truncation error in the FEM operator using Taylor expansion.
The etror of the second-order FDM operator is O((Ax)?) (e.g., KREYSZIG, 1999). The
error of the second term in Equation (19) is estimated to be O((Ax)?, (Az)?) from the
Taylor expansions of w1/l =y(x+ Ax,z+ Az), w*V! =u(x+ Ax,z— Az),
w =Wt = y(x — Ax,z+ Az) and u~! = u(x — Ax,z — Az). Therefore, the FEM
operator involves the truncation error of the same order as the second-order FDM
operator, if we keep Ax and Az on the same order. This implies that the FEM operator
may cause numerical dispersion in a similar way to the FDM operator.

In the traditional FEM approach, tetrahedra are used to model a very
complex structure as schematically shown in Figure 3a (e.g., BAO et al., 1998).
KomAaTITscH and VILOTTE (1998) adopted a mesh in curvilinear coordinates to
model very complex underground structure and surface topography utilizing their
layered features. However, only voxels are allowed in our voxel FEM, so that
discretization errors of the same order as FDM may be introduced. To avoid
these problems we have to use a finer submesh for any complex part of the
model. The submesh interval should be smaller than in the tetrahedron mesh as
shown in Figure 3b.

We have built the equation of motion in the weak form (2) imposing the traction-
free condition on the outer boundary of the medium. Therefore the free-surface
condition at the upper part of the boundary is automatically satisfied, even though it
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(a) tetrahedron FEM

(b) voxel FEM

{c) model

Figure 3
(a) Tetrahedron and (b) voxel meshes for the underground structure in (c).

has arbitrary shape. This is one of the greatest advantages of FEM over FDM.
However, the side and lower parts of the boundary may cause artificial reflections if
we do not apply a suitable boundary condition in addition to the traction-free
condition. We introduce here the viscous boundary condition of LYSMER and
KUHLMEYER (1975) to avoid this difficulty. A buffer zone of 10 ~ 20 elements in
width is also defined adjacently to the side and lower parts, and we assign large
damping moduli there to further attenuate artificial reflections.

2-D verification

For numerical examples of the voxel FEM, we first compute seismograms from an
explosive line source buried in a 2-D fullspace of Vp = 6.0km/s, V5 = 3.0km/s, p =2.5km/s



Vol. 161, 2004 Voxel FEM Simulation of Seismic Ground Motion 2191

and Q, = 40. To simulate the fullspace the buffer zone is also defined along the upper
boundary of a halfspace in addition to the side and lower boundaries. The right panel of
Figure 4 shows the displacements of nodes at the same level as the source. They
favorably compare with the seismograms computed by FDM and semi-analytical
solutions by the discrete wavenumber (DW) method (TAKENAKA, 1990) in the middle
and left panels.

We can find slight differences in the tails of the P-wave pulses when we
carefully inspect the seismograms at distances further than 30 km. They arise
from the difference in the implementation of medium attenuation. While the
frequency-independent Q model is built in the DW method, it is approximated
with the damping matrix proportional to the mass matrix. The approximation,
which is equivalent to the constant damping coefficient in the equation of motion
for FDM, results in the slight distortion of the remote FEM and FDM
seismograms. We can incorporate a more accurate attenuation model (e.g.,
CARCIONE et al., 1988), but this will significantly increase memory requirement
and computation time.

It takes 54 s for the voxel FEM on a 2.0 GHz Pentium to complete the 1000-
step time history in a 512 x 256 mesh using 3.8 MB memory, while FDM of
FUrRUMURA and TAKENAKA (1995) spends 46 s computational time for the same

. S
15 !\r }\( j\ﬁ
N\ \— A
A \- A
A - A
— A A N
45 4 l\_'_ f\ﬁ____ /\r
N N A\ -
et e i
DW FDM FEM
Figure 4

Comparison of seismogram sections simulated by the discrete wavenumber method (left), FDM (middle)
and FEM (right).
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configuration using 3.7 MB memory. In other words, the voxel FEM runs 85% as
fast as FDM using a similar amount of computer memory to that of FDM. This
memory requirement is for a case of the domain modeling mentioned in the
section ‘Voxel elements.” The FEM code includes ten reserved domains, two of
which were used for the medium and buffer zone. If we do not use the domain
modeling, we have to allocate five times larger memory.

A time step At longer than 0.10 s leads to numerical instability in the recursive
procedure (16) for the above example. Using the Courant condition

min{Ax, Az)

At <
‘TR

(20)
for the P-wave propagation, we interpret At < 0.10 s as the Courant number ¢ = 0.80.
On the other hand, The FDM calculation becomes unstable for Az > 0.056, and so ¢ of
FDM is 0.45. Therefore, the additional accuracy of Equation (19) relaxes the Courant
condition allowing a time step 1.8 times longer than in FDM.

3-D verification
We also calculate ground motions from a point source in a 3-D half space
(Vp = 4.0 km/s, Vs =23 km/s, p= 1.8 g/cm?®) of GRAVES (1996) using the voxel
FEM. They are compared with results of the reflectivity method (KOHKETSU,

1985) for verification. As shown in Figure 5, the voxel FEM achieves good
agreement for three kinds of seismic point source at a depth of 2.5 km in the

Strike Slip 45deg Dip Slip Dip Slip

Tangential —J\\y p— ﬁ»f\}\f 4\/\’\{\/
Y I

reflectivity FEM reflectivity FEM reflectivity FEM

Figure 5
Ground motions due to a point source in the halfspace of GRAVES (1996) (left: reflectivity method, right:
FEM).
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halfspace with a cosine time function 1s long. It takes 1.4 hour for the voxel
FEM to complete the 20s (800 steps; 0.025s interval) time history of a
30 x 30 x 10 km medium (4,608,000 elements; 125 m interval) on a 1.7 GHz
Pentium, while FDM of FURUMURA et al. (2000) spends 1.0 hour for the same
configuration. The voxel FEM requires a similar amount of memory to that of
FDM. The next verification is carried out for a strike slip source at a depth of
1.6 km in a horizontally layered structure. This three-layer model was also
proposed by GRAVES (1996). The FEM code occupies 675 MB memory for
12,800,000 elements, and again achieves good agreement as shown in Figure 6.

As mentioned earlier, the greatest advantage of FEM is that the traction-free
condition has already been cast in the formulation. No special treatment is needed
for a free surface with arbitrary shape. In order to confirm this advantage, another
test of GRAVES (1996) is carried out in the halfspace. The dashed FK seismograms in
Figure 7 should be correct. Although the FDM results somewhat fail to agree with
them, the results by the voxel FEM achicve good agreement.

To describe how to deal with a piecewise regular mesh, we again adopt the
above three-layer model and compute tangential seismograms. A fine submesh
with intervals of 37.5 m is introduced into the shallow part of the model. Coarse
spacing of 75 m is applied to the other part of the piecewise regular mesh as in
the regular mesh. The computation in each submesh is carried out independently,
and then displacements and velocities on both sides of a submesh boundary are
averaged with weights of lumped masses at common nodes as shown in the right
diagram of Figure 8. These averages will be used at the nodes in the next time
step. The seismogram in the regular mesh fairly agrees with that by the reflectivity
method, and the agreement is improved in the piecewise regular mesh as shown in
the left and middle panels, since the fine submesh minimizes numerical dispersion
in the low-velocity portion of the model.

Tangential —"\’\f'\ﬁf—’\% ——*f\‘f"\ﬁl‘—\/\/\»*

Vertical — A WNN—~ — WA\~

reflectivity FEM

Figure 6
Ground motions due to a point source in the layered structure of GRAVES (1996) (left: reflectivity method,
right: FEM).
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Figure 7
Comparison of seismograms calculated with the FK technique, the FDM using the modified vacuum
formulations (after GRAVES, 1996), and the voxel FEM.

37.5m
i ] i
— FEM
— reflectivity
75m
regular spacing (75m) piecewise regular spacing (75 and 37.5m)

Figure 8
Comparison of seismograms calculated with regular and piecewise regular spacings. We also compare them
to the seismogram by the reflectivity method. The right diagram schematically shows how to deal with the
special nodes along the common side between fine and coarse submeshes.

Supplementary Examples

In order to demonstrate the usefulness of the voxel FEM, we show some
numerical examples in this section. FURUMURA and KOKETSU (1998) performed
FDM simulations in three typical geological settings, which are an exposed bedrock,
flat sediments and a sedimentary basin shown in Figure 9. Their resultant peak
ground velocity distributions are presented in the three panels on the left-hand side.
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50 {a) Bedrock (b} Sediment (c) Basin (d) Basin+«Mountain

10 -5 0km

Figure 9
Peak ground velocity distributions due to a 10 by 5 km strike slip fault (M6) at a depth of 2 km buried in
(a) an exposed bedrock, (b) flat sediments, (c) a sedimentary basin and (d) a basin neighboring the
mountain range.

10

=]

H

mm

Figure 10
Distribution of vertical static displacements due to a strike slip in the half space (upper: OKADA's (1985)
solution, lower: FEM).

The basin model is constructed based on the geology around the area damaged by
the 1995 Kobe earthquake, however the surface topography in a mountain range
neighboring the sedimentary basin is neglected because of the limitations of FDM.
Since FEM requires no special treatment for including the topography, we construct
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the fourth model on the right hand side. The result of the voxel FEM simulation for
the fourth model shows that the mountains look confining the motion of the basin, so
that the ground motion close to the boundary between the basin and mountains is
attenuated.

WALD and GRAVES (2001) demonstrated that FDM could calculate even static
displacements if the computation continues for a sufficiently long time. This
demonstration is confirmed using the voxel FEM in the same halfspace as in the
previous section. Figure 10 favorably compares the vertical static displacements by
the voxel FEM with the theoretical solutions by OKADA (1985).

Conclusions and Discussion

The FEM has been reformulated for seismic ground motion simulation using a
voxel mesh and its accuracy is assessed with a discrete representation of the
spatial derivative ou/0x. The voxel FEM operator involves a truncation error of
the same order as the second-order FDM operator, but the additional accuracy of
FEM rclaxes the Courant condition for the length of a time step. While
conventional FEMs require both large memory and computation time, the voxel
FEM requires a similar amount of memory to the FDM and only takes 1.2~1.4
times longer computation time. The mesh generation for the voxel FEM is as easy
and fast as in the FDM. We calculate ground motions and static displacements
due to point or line sources in a halfspace or three-layer structure. Comparisons
with results of the reflectivity method and theoretical solutions show good
agreement achieved with the voxel FEM. We also demonstrate the inherent
advantage of the voxel FEM at a free surface and its applicability to complex 3-D
topography and structures.

The voxel FEM method uses the linear Lagrange interpolants. In the spectral
element method (e.g., KOMATITSCH and VILOTTE, 1998; KoMATITSCH and TROMP,
1999) higher-order interpolants are used to allow coarse sampling by the medium
elements, and still avoid numerical dispersion. This approach has been very
successfully used for large-scale propagation problems both globally (CHALIUB and
VILOTTE, 1998) and in a substantial portion of southern California (KOMATITSCH
et al., 2002). However, for the class of shallow structure which need to be represented
for studies of seismic ground motion, the variations in medium properties can be so
fast that small cells are essential. Frequently the sampling will need to be so fine that
it would be very difficult to adopt the meshes employed in the spectral element
method. The simple voxel FEM approach can be used with several scales of cells to
provide an effective scheme for simulating seismic ground motion even with rapid
variations in a near-surface structure.
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