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An Efficient Method for Computing Green's Functions for a Layered 

Half-Space with Sources and Receivers at Close Depths 

by  Yosh i ak i  H i sada  

Abstract We propose an analytical method to compute efficiently the dis- 
placement and stress of  static and dynamic Green's  functions for viscoelastic 
layered half-spaces. When source and receiver depths are close, it is difficult 
to compute Green's  functions of the layered half-space, because their inte- 
grands, whose variable of  integration is the horizontal wavenumber,  oscillate 
with only slowly decreasing amplitude. In particular, when the depths are equal, 
it is extremely difficult to compute  the stress Green 's  functions, because their 
integrands oscillate with increasing amplitude. To remedy this problem, we first 
derive the asymptotic solut ions,  which converge to the integrands of  Green 's  
functions with increasing wavenumber.  For this purpose, we modify the gen- 
eralized R / T  (reflection and transmission) coefficient method (Luco and Apsel; 
1983) to be completely free f rom growing exponential terms, which are the 
obstacles to finding the asymptotic solutions. By subtracting the asymptotic so- 
lutions from the integrands of the corresponding Green 's  functions, we obtain 
integrands that converge rapidly to zero. We can,. therefore, significantly reduce 
the range of  wavenumber  integration. Since the asymptotic solutions are ex- 
pressed by the products of Bessel functions and simple exponential functions, 
they are analytically integrable. Finally, we obtain accurate Green's  functions 
by adding together numerical and analytical integrations. We first show this 
asymptotic technique for Green's  functions due to point sources, and extend it 
to Green 's  functions due to dipole sources. Finally, we demonstrate the validity 
and efficiency of  our method for various cases. 

Introduction (Description of  the Problem Using 
a Spherical Wave) 

We first explain why there are difficulties in com- 
puting the displacement and stress Green's functions, 
when the source depth is equal or close to the receiver 
depth. We illustrate this problem with a spherical wave, 
noting that any 3D wave field can be expressed as a su- 
perposition of spherical waves via Huygen's principle. 
A dynamic spherical wave can be decomposed into cy- 
lindrical waves using the Sommerfeld integral (see, e.g., 
Aki and Richards, 1980) 

lexp(i~R)=fo=[!exp{-vlz-hl}Jo(kr)] dk 
2 

R=~v/r2+(z-h)2,~=k2-(-~),Re(u)>=O, (1) 

source and the receiver, c is the velocity of the medium, 
to is the circular frequency, J0 is the Bessel function of 
the order 0, and the variable of integration (k) represents 
the horizontal wavenumber. In order to obtain stresses, 
we need to differentiate equation (1) with respect to z or 
r. For example, the derivative of equation (1) with re- 
spect to r gives us 

(1--i~)~exp(i~ R) 
=fo=[~exp{-vlz-hl}Jl(kr)] dk. (2) 

where h and z are the depths of source and receiver, 
respectively, r is the horizontal distance between the 

When the source depth is equal to the receiver depth (h 
= z), equations (1) and (2) are expressed as 
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l exp( i~r )  = fff {~J°(kr)} (3) ( 1 - i ~ ) ~ e x p ( i c R ) = f o = [ ( ~ e x p { - t ' l z - h l }  

c)' (°) ,} - i  - e x p  i - r  = Jl(kr dk, (4) 
r c 

} ] r 
- exp{-klz - hi} kJ,(kr) dk + -- g 3 '  

(8)  

respectively. The integrations here are more difficult to 
compute than those of equations (1) and (2), because the 
decaying exponentials (exp{-ulz - hi}) of equations (1) 
and (2) disappear and their integrands oscillate with slowly 
decreasing and increasing amplitudes, respectively, with 
wavenumber. 

The same problem occurs when computing the 
Green's function of the layered half-space, as described 
in Apsel and Luco (1983), Herrmann and Wang (1985), 
Chang (1988), and Hettmann (1993). In order to remedy 
this problem, two techniques have been proposed. Chang 
(1988) proposed "the repeated averaging method," tak- 
ing advantage of the well-behaved damped-oscillating 
property of the latter part of the integrand of the dis- 
placement. This method is stable but is rather time-con- 
suming because a set of accurate peak and trough values 
in the damped-oscillating part are required to determine 
the average value. For computing the stress, this method 
is probably unstable because of the increasing-oscillating 
property. An alternative, more analytical, method is pro- 
posed by Apsel and Luco (1983), who take advantage 
of the fact that the integrand of the dynamic Green's 
function converges to that of the static Green's function 
with increasing k. 

We shall explain Apsel and Luco's (1983) idea us- 
ing our example. The static solutions corresponding to 
equations (1) and (2) are expressed as follows, by im- 
posing o9 = 0 

1 fo = [exp{-klz hi} Jo(kr)]dk 
R 

(5) 

rf0  = [k exp{-klz - hi} J,(kr)ldk. (6) 

It is clear that the integrands in equations (1) and (2) 
approach those in equations (5) and (6) as k increases. 
Therefore, subtracting equations (5) and (6) from equa- 
tions (1) and (2) and rearranging, we have 

lexp(i  W--- R) = exp{-v lz -  hi} 
\ c / 

(7) 

respectively. The above integrands quickly converge to 
zero with wavenumber, even for h = z. In fact, when h 
is equal to z, equations (7) and (8) become 

~ e x p ( i c r ) = f f [ { ~ - l } J ° ( k r ) ] d k + l r  (9) 

- i - e x p  i - r  
r c 

=fo=[{~- l }kJ | (kr ) ldk+~ • (10) 

We find the { } parts in the above integrands converge 
to zero with increasing k. Thus, we can significantly re- 
duce the integration ranges as compared with those of 
equations (1) and (2), particularly when the source depth 
is the same or close to the receiver depth. 

The main problem with this method is that there is 
no analytic integral solution of the static part of the Green's 
function for a general multi-layered half-space. Apsel and 
Luco (1983) approximate this by the static solution of 
the homogeneous half-space with the same material 
properties as the layer that includes the source, although 
the convergence is slow. Herrmann and Wang (1985) 
and Herrmann (1993) improved Apsel and Luco's method 
by finding numerically approximate asymptotic solutions 
using Haskell's propagator matrix. 

The purpose of this study is to develop Apsel and 
Luco's (1983) method by finding theoretically appropri- 
ate asymptotic solutions. To do this, we first derive in- 
tegrands of the static and dynamic Green's functions 
without the growing exponentials, which hinder analyt- 
ical formation of the asymptotic solutions. Second, we 
describe the procedure for computing Green's functions 
due to point and dipole sources. Finally, we check the 
validity of our method using a layered half-space model. 

An Efficient Method to Compute Green's  
Functions of  Layered Half-Space 

Static and Dynamic Green's Functions Due 
to Point Sources 

In order to find an analytic form for the asymptotic 
solutions of the integrands of Green's functions, we need 
static and dynamic Green's functions that do not have 
growing exponential terms. For this purpose, we adopt 
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the generalized R/T  (reflection and transmission) coef- 
ficient method (Luco and Apsel, 1983) and the stress 
discontinuity representations (Harkrider, 1964; Haskell, 
1964) to express the boundary and source conditions, 
respectively. The R/T coefficient method is well known 
to be much more numerically stable than other conven- 
tional propagator matrix methods (e.g., Haskell, 1953), 
because it avoids growing exponential terms by intro- 
ducing the R/T  coefficients of the up/downgoing waves 
in each layer. Kennett (1974) and Kennett and Kerry 
(1979) first proposed this method for 2D and 3D cases, 
respectively. In this study, however, we adopt the other 
version of the R/T  coefficient method by Luco and Ap- 
sel (1983), because of the following two reasons. First, 
its form is simplified by introducing "the generalized R/T 
coefficient," and its physical meaning is clearly under- 
stood. Second, they derived the explicit static solution 
of the R/T coefficient. The static solution requires con- 
sideration of the singularity of the coefficient matrix, 
which is caused by the disappearance of differences be- 
tween terms associated with P and S waves. Because of 

S 
~"ource'Po~nt!iiiii ~:.:....<-,. (S-1 ) ~  

o 
o 

I 
I Receiver oint[ (r,0,z) , 

) X 
. . . . . . . . . . .  j . . . . . . . . . . . . . . .  ( 0 )  . . . . . . . . .  = 

~ ~ ~ : 0  : : : : : : : : : : : : : : : : : : : : : : :  

2nd layer: 

Figure 1 .  The multi-layered half-space model 
considered in this study. Point sources are located 
at (0,0,h) in the Sth layer, with the vector com- 
ponents (Qx,0,0), (O,Qy,O), and (0,0,Qz) in the 
Cartesian coordinate system. The receiver is lo- 
cated at (r,O,z) in the jth layer, with the displace- 
ment components (Ur, Uo, Uz) in the cylindrical co- 
ordinate system. 

this simplicity, together with the numerical stability up 
to very high frequencies, the generalized R/T coefficient 
method by Luco and Apsel (1983) has been widely used 
to compute not only Green's functions (e.g., Chang, 1988; 
Chin, 1992) but also the normal modes solution (Chen, 
1993). However, Luco and Apsel's formulation includes 
growing exponentials in the source terms and has nu- 
merical instabilities at very high frequencies and/or large 
wavenumbers. To avoid this problem, we adopt "stress 
discontinuities" to express the source conditions, as shown 
by Kennett and Kerry (1979), and derive Green's func- 
tions without exponentials growing with wavenumber and/ 
or frequency. 

Figure 1 shows a layered half-space consisting of 
horizontally flat N layers overlying the homogeneous half- 
space. Point sources and a receiver are located at (0,0,h) 
and (r,O,z), respectively, in the cylindrical coordinate 
system. We assign the layers with the source and the 
receiver to the sth andjth layers, respectively. Assuming 
the time-dependent term as exp(-itot), static and dy- 
namic Green's functions at the receiver will be the fol- 
lowing forms: 

U~(~)(r,O,z;h) fo ~ ( " dJ,(kr) = ~V](~)(z;h) 

" i x "  Jl(kr)] (cos ~) 
+ t/l(~)l,z;h) - -~-r  ~ dk \ s in  

• (cos:t 
-- u~(~)(r,z;h) \ s in  

U~(r,O,z;h) = - {V~z(z;h) J~(kr)}dk 

UJ°(~)(r'O'z;h)=(---)fo ~lV~(~(z;h)J~(kr)l. "" kr 

=--(-+)uJo(~)(r,z;h)(:in;) 

U~oz(r,O,z;h) = 0 

• ( ,o , ; )  
=-- -u~(~)(r,z;h) ksin 
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~0 c° U{z(r,O,z;h) = - {W2~(z;h) Jo(kr)}dk. (11) 

for displacement, and 

• dll(kr) 
Cr~z(~)(r'O'z;h) = fo { W3(~)(z;h) ~ r  

J'(kr)~dk(C°S~) 
+ Hiz~)(z;h) kr J \ s i n  

f (rJr=(r,O,z;h) = - {Gz(z;h) J,(kr)}dk 

• Jl(kr) 

dJ~(kr) ~dk ( sin 
+ Hi2(~)(z;h) ~ J , c o s ; )  

CriOzz(r,O,z;h) = 0 

Cr{z(~)(r'O'z;h)=-l~{VJ4(~)(z;h)Jx(kr)}dk(C°S:)\ sin 

o'~=(r,O,z;h) = - {W4z(z;h) Jo(kr)}dk (12) 

for stress. In the above equations, Ur, Uo, and U~ are the 
components of displacements in the cylindrical coordi- 
nate system, and O',z, o'0z, and o-= are those of stresses 
on the plane normal to the z axis. The superscript j rep- 
resents the jth layer, and the last subscripts x, y, and z 
correspond to the solutions due to the point sources with 
vector components (Qx, O, 0), (0, Qy, 0), and (0, 0, Qz) 
in the Cartesian coordinate system, respectively. Within 
the parentheses, the upper and lower values are allotted 
to the solutions due to Qx and Qy. Jo and J] are Bessel 
functions of orders 0 and 1, and the variable of integra- 
tion (k) represents horizontal wavenumber. H~ and H~ 
and V~ - Vi4 are "the displacement-stress vectors" (Ken- 
nett and Kerry, 1979; "the motion-stress vectors" in Aki 
and Richards, 1980; "vertically polarized waves" in Luco 
and Apsel, 1983) for SH and P-SV waves, respectively, 
which depend on z, h, k, and the source and boundary 
conditions. The explicit forms of the displacement-stress 
vectors, which do not have growing exponentials, are 
given in Appendix A. 

Asymptotic Solution of Green's Function 

We find the asymptotic solutions of Green's func- 
tions at large wavenumbers. Since our main concern is 
the case when the source depth is equal or close to the 

receiver depth, we assume the source and the receiver 
are located in the same jth layer for the derivation of our 
equations. Later, we shall numerically check the validity 
of these equations for the cases when the source and/or 
the receiver are located on a boundary between layers 
and/or in different layers. As shown in Appendix B, the 
displacement-stress vectors for very large k converge to 
the following forms: 

nJq(z;h) ~- ISl~q(z;h) = ISIJq exp{-k]z - hi} 

{ V!q(z;h)~ ~ ~,rJq(z;h) 

VJ2q(Z ;h) J [. ~rlq (Z ;h) J 

= ( { l~'rJlq "~ k~'Z~2q~ e x p { - k l z -  hi}, 
L ~'rilq + kfrJzqJ 

(q = x, y, or z) 

~k~J2q = Vi2q = 0, fo rz  = h (13) 

for the displacement vectors, and 

H%(z;h) -~ I:I~q(z;h) = H~qk exp{-k lz  - hi} 

VJq(z;h) ~ ~ ~ ~fJ!q(z;h) 

V~(z;h)J I.V~(z;h)J 

= ~ ~Trjlq "~ kgJ32q~kexp{-klz- hi}, 
L~TrJ41 q + kVJ2qJ 

(q = x, y, or z) 

~rJ2q = V~2q = 0, for  z = h (14) 

for the stress vectors, where the values with upper bars 
in the right-hand sides of the equations are constants, 
which we show later how to determine. 

Substituting the asymptotic solutions (13) and (14) 
into the corresponding displacement-stress vectors of 
equations (11) and (12), and by analytic integration us- 
ing the relations given in Appendix C, we obtain 

\ sin --- u~(O \ sin 

O~O',O,z;h) = - { V G &  + VG&} 
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= --  -{-. VY12(~)7 (]Jo(~)(r,O,z;h) (zJ (;) r 

-b /-I{(~) ($1 - ~ )  ) ( : i~  ; )  

- ( : )  ~Jo(;) ( : i :  ; )  

_. //cos ~) 
(]~(;)(r,O,z;h) = -{I?~(~)$5 + V~2(~)$6}~ sin 

_ (cos 0] 
-= u~(~) \sin 0/  

(]~(r,O,z;h) = -{Q~I~S, + i?~2~$2}, (15)  

for displacement, and 

(c°s : ) y  \ sin 

&¢=(r,O,z;h) = -{~?J31zS6 q- vJ32zS7} 

• / - - ~ f  _. 5 5 _. 5 6 
6"J°z(~)(r'O'z;h) = ~ VJ31(~) r + VJ32(~) r 

+/1~(~) ( ' z  - ~ )  } (:ic: ; )  

/(cos:) 
6~z~)(r, O,z;h) = - { 17~1(~)$6 + V~2(;)$7) \ sin 

6"Jz=(r,O,z;h) = -{I?~$2 + 17~2~$3}, (16) 

for stress; see Appendix C for $1 through $7. 

Procedure to Compute the Green's Function Using 
the Asymptotic Solution 

We describe how to compute static and dynamic 
Green's functions due to point sources, using the asymp- 
totic solutions obtained above. This procedure is basi- 
cally the same as Herrmann's (1993). 

First, we determine the constant values in equations 
(13) and (14). We obtain those values by substituting z, 
h, and large wavenumbers into the corresponding dis- 
placement-stress vectors given in Appendix A: 

l~tJq ~- H~q(~:) exp{~:lz - hi} 

f 1 . m V (~)l-'rJ'--2q : k2 -- kl  {VJ(1)q (k2) exp{~]z - hi} 

- WJ(1)q (kl) exp{~lz - hi}} 

0, (z = h) 

(z # h) 

= vJ(1)q (5)  exp{k111 z - h i } -  k~VJ(1)2 q 

L W(~)q(k), (z = h) 

(z # h) 

(17) 

for the displacement vectors, and 

1 
ISlJ2q = k HJ2q(k) exp{Tclz - hi} 

1 (1  . _ 
k2 - ka ~ W(34)q(k2) exp{~lz - hi} 

1 ) 
- kl W(43)°(~) exp{~lz - hi} 

=0 ,  k_ 

l ! . . . . . .  

_ = VJ(34)q(k,) exp{kl[Z - h[} - kl W(3)2q 

(z # h) 

(z = h) 

(z # h) 

(18) 
for the stress vectors, where k, k l ,  and k 2 are large 
wavenumbers much greater than the Rayleigh and Love 
poles and the branch points, satisfying the following 
conditions: 

k, kl, and k2 >> max{real (k~ or k~)}, 

( j =  1,2 . . . . .  N +  1) (19) 

m m 
and k 1 ~ k 2. 

Second, subtracting asymptotic solutions (13) and 
(14) from the corresponding displacement-stress vectors 
in equations (11) and (12) and adding the analytic in- 
tegrations (15) and (16) to the outsides of the integrals, 
we obtain the final solutions 

f0 [ • dJ 1 
U~r(;)(~,O,~;h) = {V~(;) - ~ ( ; ) }  ~ r  

+ {H~(~) - / 4 ~ ) }  J1 ] d k (  cOs : )  _}_ ~" 
krJ \sin U~(;) 

UJrz(r,O,z;h) I ~ [{V~z V~z} J~(kr)]dk + -- -- U ~ j rz 
3o 
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. . t. r- ~"~) J0 [ [ - - '  1~ / { v J ( ~ ) ~  J1 Uio(~)(r,O,z;h) = - V ' l @  

-. dJ l ]  / s i n O \  

U~g)(r,O,z;h) = - [{V{(~) - 9{~)} J~(kr)]dk 

.(cos:)+\ sin /-~{(~) 

U~(r,O,z;h) = - [{V{~ - 17{~} Jo(kr)ldk + O~z, (20) 

U~(O,O,h) = Mi~U~kj(r,O,z;h) = Mj~U~kj(x,y,z;h), (22) 

where the subscripts i, j ,  and k are vector components 
in the Cartesian coordinate and the summation conven- 
tions are used for them, a comma between subscripts is 
used in spatial derivatives at the point (x,y,z), Mj~ is the 
moment tensor (see, e.g.,  Aki and Richards, 1980). To 
make direct use of the asymptotic solutions obtained 
above, we do not use the reciprocity theorem in equation 
(22). Therefore, U~ is the displacement at the source lo- 
cation (0,0,h) in the sth layer, due to the moment tensor 
applied at the receiver location (x,y,z) in the jth layer. 

Green's functions in the cylindrical coordinate sys- 
tem, given in equation (11), are transferred to those in 
the Cartesian coordinate system as follows: 

for displacement, and UJxk = U~k cos 0 -- Uiok sin 0 

"~[ -- dJ 1 
Cr~z(~)(r,O,z;h) = {V~(~) - V~(~)} ~rr 

+ {H{(~) - H{(~)} krJ \ sin + O~z(~) 

O'~z~(r,O,z;h) [{VJ3~ - f,'J3~} J~(kr)ldk + "j = -- O" rzz 

UJy, = U~rk sin 0 + UJ0k cos 0. (23) 

The spatial derivatives of equation (23), which are re- 
quired in equation (22), are 

= U )kj cos 0 + UJ)k (cos 0)j 

- U/0kj sin 0 - U~ok (sin 0)j 

;I (:) OriOz(~)(r,O,z;h) = {VJ3~) - l?J3(~)} kr 

• d l l ]dk ( s in  O] . 
+ - \ c o s  0 / +  

U~kj = U~k,j sin 0 + U~ (sin O)j 

+ UJokj cos 0 + U~k (cos O) a 

for j = x or y, and 

(24) 

cr{~(~)(r,O,z;h) = - f o  = [{V~(~) - tT~(~)} J~(kr)ldk 

(cos 0] 
• + 

\ sin 0 /  where 

U~k,z = U~k,z COS 0 -- UJ0k,z sin 0 

U~k,z = U~k,z sin 0 + UJok.z cos 0 (25) 

f0 °° 
cr~zz(r,O,z;h) [{V/4~ (zJ4~}Jo(kr)]dk + "J -~- - -  - -  O "  z z z ,  (21) x Y ~ x  2 yZ c o s O = - ,  s i n O = - ,  r =  + 

r r 

for stress. Since the { } parts in the above integrands 
converge to zero with increasing wavenumber, we can 
efficiently carry out the numerical integrations. 

Green's Functions Due to Dipole Sources 

We show the procedure to obtain Green's functions 
due to dipole sources using the asymptotic technique 
presented above. Those Green's functions in the fre- 
quency domain are expressed in the Cartesian coordinate 
system shown in Figure 1, as follows: 

sin 2 0 COS 2 0 
(cos O),x - , (sin O ) , y  - -  

r r 

(COS O ) , y  ~ (sin 0),x - 

sin 0 cos 0 
(26) 

The spatial derivatives of Green's functions in the 
right-hand sides of equations (24) and (25) are obtained 
from equation (11) 
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U~(~)j = f0 ~ { V ~ ) ( d ~ ) j  + ,  HJ(~)\kr/j(Jl~ ~dk(COS\sin ~) 

• ( c o s o /  
+ u~(~) \ sin O/ j  

U s . = - {V~z(S,)d}dk rz,j 

• • J1 

\ d k r / . s J  

( s i n ; )  . ( s i n 0 )  ] 
• + u ~ ( ; )  

\cos \cos 0 ,s 

UJz(~v),j = - [ f o ~ { V J 2 ~ y ) ( J 1 ) , j } d k ( : ° . S m : )  

( oso) ] 
+ u~(x~ 

~Y~ \ sin 0 ,s 

U~z, s = - {W2~ (Jo)jIdk (27) 

s is defined in equation (11), for j = x or y, where U pq 
and 

dJl J1 dJl 
. . . . .  kr j dkr Jo kr' (Jo) o - J l k r  j ,  (J~) j dkr 

= - -  J 0 - 2  , ,j F 

= - - -  J o -  2 - - +  krJ~ 
,s r kr 

r,x = cos 0, r,y = sin 0. (28) 

We also obtain 

f0°° { .g J(~) dJ 1 ~} (COS:) = + H~(0,~ dk 
U~ y:(x~ ~ ,~ dkr \ sin 

U~,z = - {V~,~J1}dk 

• . J, . d J , ~ d k ( ~ i n  
UJ°~Y)'Z=(-+)fo={V](~) '~-kr+H](~) 'ZdkrJ , _ w  ; )  

U~(~),z: -fo~{V~(~)'~J1}dk(C°S:)\sin 

U s V( Jo}dk. zz~z ~ -- { 2z,z (29) 

We obtain H~k,z, V{k,z, and J V2k, z in equation (29) from 
H~k, and V{k through V{k in equation (11) and (12) and 
Appendix A using the following relations: 

1 
= _ H s H{k,z /z j 2k, (fork = x o r y ) ,  (30) 

and 

1 

V k z  - - -  

1 
As + 2txj {Vi4k - kAW~k}, 

(for k = x, y, or z), (31) 

where/x s and A s are Lame's constant of the jth layer. For 
the derivation of the above equations for the 2D case, 
see equations (7.20) through (7.27) of Chapter 7 in Aki 
and Richards (1980). It is easy to confirm that the same 
relations are true for the 3D case. 

Using a similar procedure used from equation (13) 
to (16) plus equations (30) and (31), the wavenumber 
integrations of the asymptotic solutions in equations (27) 
and (29) are analytically derived as follows: 

/.){(~),) = r,j {-(VJl(~)S6 "[- vJ2(~)S7) - O(~) -]- A(~)} (cos:) (cos0) 
• + a'~(~) 

\ sin \ sin 0 ,s 

_. { . . . .  1 )  
U~j  = - r  j VIllzS2 -J- VJllzS3 - - UJzz 

F 

_. (sinOt ] 
+ u~(~) \ c o s  0 j 

[ ( 1.   cos:) 
0 ~ ( 0 ,  j = - r~  ~ h ( o s ~  + ~ ( ~ ) s ~  - - a ~ !  r v , j  \ s in  

+0  ,(cos0) ] 
\ s in  0 j 
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0 j=,,.= r 0 {f/{~zS6 + 12{2=$7} (32) 

for j = x and y, where li~q is defined in equation (15), 
and 

1_.( 2) 
A ~ ) = r H J I ( ~  ) S~ r &  

was derived from Harkrider (1964). We also confirmed 
that the former is much more numerically stable than the 
latter, although we will not show those results here be- 
cause of limited space. 

Results 

(33) 

We also obtain 

1 ~fJ(~),z ~ ((~j-'(y)--WJ1 x ql- ~b~Jl(~))($2 _ ~)..[_ ( ~  ~rJ2(~) 

, 

"~-~rJ22(~))(S3- ~ ) +  ~ H ~ ( y ) r j \ s i n  

) )} OJr~,~ = -- v~,~ + f/~,. s6 + V~2z + f4~  s~ 

= - + f / ~ ( x ~  "]- VJI(~) + VJ21(~) r Y/ 

We shall test the effectiveness of our method for 
various source-receiver configurations, using the model 
shown in Figure 2. We show here only the cases for 
point sources. We also have similar results for dipole 
sources but we do not show them because of limited space. 
This model consists of two layers (shear-wave velocities: 
/3 = 1 and 2 km/sec)  overlying a homogeneous half- 
space (/3 = 3 km/sec).  For the cases from 1 to 5, we 
show only the results of selected displacement-stress 
vectors and total integrands (the products of  the displace- 
ment-stress vectors and Bessel functions) for the circular 
frequency (w) = 1, since we have obtained almost same 
conclusions for the other cases we tried. In the final case 
6, we compare the values of Green's functions obtained 
by the original integrations [equations (11) and (12)] with 
those by the use of the asymptotic solutions [equations 
(20) and (21)]. In all cases, except case 3, we take k, 
kl, and k 2 of equations (17) and (18) as the following 
values: 

)$6 1 ( ~ ) / ( s i n ; )  
- + -~q~(~) & -  

+ Q~2(~) r /z 1 J \ c o s  
= 50 real (k~) ~ 0.05, 

1 
/-){(~),z - At + 2#  j {(~r~l(~) -- /~JVJl(~))S6 

• _. //COS 

1 
0 j .... = At + 2tzj{( -V/4,~ - AJ9~,~)S2 + (rV~zz - AJrV~2~)S3} 

(34) 

Finally, we obtain Green's functions due to dipole 
sources using the following procedure. First, we deter- 
mine the constants/~Jq and ~rjq using equations (17) and 
(18) and construct the asymptotic solutions (13) and (14) 
plus (30) and (31). Second, we subtract the asymptotic 
solutions from the corresponding displacement-stress 
vectors in equations (27) and (29), and numerically carry 
out the wavenumber integrations. Finally, we obtain the 
Green's function (22) by adding the analytical integra- 
tions (32) and (34) to the corresponding numerical in- 
tegrations. 

We confmned that our Green's functions due to point 
and dipole sources agree well with those by a numerical 
code based on Haskell's propagator matrix method, which 

I- 2km I T M  

Source Locations X ,  r 

================================================ 
]i : i ~ : :l: . . . . . . . .  : : : : : : : Receiver Location Ease 5'an~l 6 :: : 

1 kmii i  ~ i i i i i i  i i i i i i ! i i i i i : : : : : : : : : : : : : Q ! z . . ° ' 5 ~ ) . : : :  

Z 

Figure 2. The layered half-space model to check 
our method. In the following computations, we 
use a point source with Q~ = Qy = Qz = 1 for the 
case ofw = 1. 
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k = k2 = 60 real (k~) = 0.06 

which are large enough to construct the asymptotic so- 
lutions (13), (14), (17), and (18). 

Case 1 (Displacement-Stress Vectors for the 
Source on the Free Surface) 

In the first case, we fix the source at the free surface 
(h = 0) and locate the receivers at two different depths 
(z = 0 and 100 m) for displacement and four depths (z 
= 0, 10, 100, and 500 m) for stress. Since the imaginary 
parts of the displacement-stress vectors quickly converge 
to zero without the use of the asymptotic technique, we 
only show the results of  the real parts in this and the 
subsequent cases from 2 to 5. Figure 3 shows wavenum- 
ber versus the real parts of  the displacement vector V~. 
Solid lines represent the original vector V{~, and the dashed 
and dotted lines correspond to the vector with the asymp- 
totic technique (V~ - V{~), which is referred as "our 
method" in the figure. When the source and the receiver 
are located at the same depth (h = z = 0), the original 
vector V{~ converges to a constant as the wavenumber 
increases beyond the peaks and troughs corresponding 
to the Rayleigh poles. When the receiver depth is close 
to the source depth, the same vector slowly decreases as 
an exponential function. These properties are expected 
from equation (13) and A_ppendix B. In contrast, the vector 
by our method (V~ - V~) quickly converges to zero in 
all cases. 

Similarly, Figure 4 shows the stress vector V{~. Solid 
lines represent the original vector V~ and the other kinds 
of lines correspond to the vector V{~ - V{~ for various 

o 

. ~  i o 

~o 

0 

Our method (z = 0 and 100 m) 

Original (z = 100 m) 

t 

2x10 -3 

\ 
Original (z = 0 m) 

4x10 -3 6 x l 0  -3 8x10 -3 

Wavenumber (unit: l/m) 

Figure 3. Wavenumber versus the real parts of 
the displacement vector V~ for case 1 (the source 
depth, h = 0). The solid lines represent the orig- 
inal vector V J ,  and the dashed and dotted lines 
show the vector by our method (V~ - 1)~). Note 
that the dashed and dotted lines share almost iden- 
tical trajectories, and quickly converge to zero with 
increasing wavenumber. 

depths of the receiver. When the source and the receiver 
are located at the same depth, the original vectors di- 
verge, as expected from equation (14) and Appendix B. 
However,  the vector by our method quickly converges 
to zero for all cases. 

Case 2 (Displacement-Stress Vectors for the 
Source at the Middle of  a Layer) 

In this case, we fix the source at the middle of the 
first-layer (h = 500 m) and take the receiver at various 
depths. Because we obtained the almost same results to 
those of the case 1, we show just one stress vector. Fig- 
ure 5 shows the original vector VJ4~, and the vector V~x 

- r~{~. Similarly to case 1, the latter quickly converges 
to zero beyond the Rayleigh poles. 

7 

g~  

.o 

Original (z = 0 m) 

\ \ Our method (z = 500 m) 

\ Our method (z = 100 m) 
Our method (z = 0 and 10 m) 

2x10 -3 6x10-3 8×10 -,3 

Wavenumber (unit: l/m) 

Figure 4. 
vector V~z. 

Same as Figure 3 but for the stress 

T T F T 

Original (z = 600 m) 

;. Our method (z = 600 m) 

/ I ~ Ou r  method (z = 500 m) 
~", t ~ ~ " " Origio~ (z = 510 m] 

~ 0  2x10 ~3 4x10 -3 g x t 0  -3  8x10  -3 

Wavenumber (unit: l/m) 

Figure 5. Same as Figure 3 but for the stress 
vector V~x in case 2 (h --- 500 m). 
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Case 3 (Displacement-Stress Vectors for the 
Source Close to a Boundary between Layers) 

In our third case, we fix the source 50 m above the 
first boundary (h = 950 m) and locate the receivers at 
two different depths (z = 950 and 1050 m) for displace- 
ment and three depths (z = 950, 960, and 1050 m) for 
stress. Note that the receiver at z = 1050 m is located 
in a different layer from the source layer. We found that 
the values for k, kl, and ~ given earlier were not large 
enough to construct the asymptotic solutions (13) and 
(14), because of the waves reflected from the boundary 
close to the source, which are neglected in the solutions. 
Thus, we use the following larger values in this case: 

kll = 200 real (k~) ~ 0.20, 

.2 

s o  

Original (z = 1050 m) Original (z = 950 m) 

/ 

~ Our method (z = 1050 m) 

Our method (z = 950 m) 

. . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i 
5 x 1 0  - 3  0 . 0 1  0 . 0 1 5  0 . 0 2  0 . 0 2 5  0 . 0 5  

Wavenumber (unit: l/m) 

Figure 6. Same as Figure 3 but for the dis- 
placement vector V~ in case 3 (h = 950 m). 

k = k2 = 210 real (k~) ~ 0.21. 

Figure 6 shows the displacement vector V~x and 
V~x - l?~x. Similarly, Figure 7 shows those of stress vec- 
tor V~x. Although both vectors by our method (V~ - 
rf~x and (VS4x - f'S4x) converge to zero much more quickly 
than the originals (V~ and If{x), even for z = 1050 m, 
the rates of convergence are much slower than the pre- 
vious two cases; note that the scales of  the horizontal 
axes in the two figures are larger than those in the pre- 
vious figures. As mentioned above, this is because of 
the reflected waves; their amplitudes converge slowly to 
zero with wavenumber in this case, as shown in equation 
(B3) and (B4) in Appendix B. 

Case 4 (Displacement-Stress Vectors for the 
Source on a Boundary between Layers) 

We check the case for the source located on the 
boundary between the second layer and the underlying 
half-spaces (h = 2000 m). All displacement-stress vec- 
tors quickly converge to zero. As an example, Figure 8 
shows the case for a stress vector. This indicates the va- 
lidity of  equations (13) and (14) in this case. 

Case 5 (Total Integrands of Green's  Functions) 

Next, we show the total integrands of  Green's  func- 
tions given in equations (11), (12), (20), and (21), which 
are expressed by the products of  the displacement-stress 
vectors and Bessel functions. We choose the case for h 
= 500 m, r = 2000 m, 0 = 0, and Qx = O r  = Q~ = 1. 
Figure 9 plots the integrand o f  U~ against wavenumber 
for z = 500 and 550 m. The solid lines represent the 
original integrands, and the dashed and dotted lines cor- 
respond to the integrands minus the asymptotic solutions 
for z = 500 and 550 m, respectively. The solid lines 
oscillate with slowly decaying amplitudes, whereas the 

•ol 
t . i . t . i , i , J 

G% 
'o Ong~al  (z = 1050 m) 

.~ [ \ Our method (z = 960 m) 

~ ° I~~.~ Our method (z = 950 m; 

~ r ~ our  method (z = 1050 m) 

~ I  Original (z = 950 m) 

, i , i , i , i -  , i , r 
0 0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8  O.  1 0 . 1 2  

Wavenumber (unit: I/m) 

Figure 7. Same as Figure 6 but for the stress 
vector V~x. 

'7 Original (z = 2000 m) 

0 2 x 1 0  - 3  4 x 1 0  - 3  6 x 1 0 - 3  8 x 1 0 - 3  

Wavenumber (unit: l/m) 

Original (z = 1990 m) 

-[ ~ h o d  (z = 2000, W-,._ '~ 2010 and 1990 m) 

Figure 8. Same as Figure 3 but for the stress 
vector VS3x in case 4 (h = 2000 m). 
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2 

O ~ u r  method X~Odginal  (z = 550 m) 
z = 500 and 550 m) Original (z = 500 m) 

Wavenumber (unit: l/m) 

F i g u r e  9 .  W a v e n u m b e r  versus the real parts of  
the integrand U~ for case 5 (h = 500 m). The 
solid lines and the broken lines represent  the re- 
suits by the original and our methods ,  respec- 
tively. The integrands by the original method show 
slowly decreasing oscillations with wavenumber ,  
whereas those by our method show quick conver-  
gence to zero. 

dashed and dotted lines quickly converge to zero. Sim- 
ilarly, Figure 10 shows the integrand of o-~z. The orig- 
inal integrand for z = 500 m has an increasing-oscilla- 
tion, which is very difficult to integrate numerically, as 
shown in case 6. The original integrand for z = 550 m 
has an extremely slowly decreasing oscillation. On the 
contrary, the integrands minus the asymptotic solutions 
(dashed and dashed lines) quickly converge to zero for 
all cases, which can be easily integrated. 

Case 6 (Green's Functions by the Original 
Integration versus Those by Our Method) 

Finally, we compare the final values of Green's 
functions obtained by the original integrations [equations 
(11) and (12)] and those by the use of the asymptotic 
technique [equations (20) and (21)]. We adopt the same 
parameters used in case 5 and carry out the numerical 
integrations using Simpson's rule with increments of 
0.000001 for wavenumbers between 0.000001 and 
0.0006, and with increments of 0.0001 for wavenumbers 
greater than 0.0006. We can use the larger increments 
beyond 0.0006, because of the smooth oscillations of the 
integrands beyond the Love and Rayleigh poles, as seen 
in Figures 9 and 10. 

Figure 11 shows the upper limit of the integration 
range (maximum wavenumber) versus the absolute val- 
ues of the three displacement components, IU)~ + 
U~ + U~z[, [Ulo~ + Uloy + Ulz[, and [O~ + U~ + U~z[, and 
the stresses components, [O'rl,, + ~,y + O'rl=[, [O'~x + 

1 1 oJ0,y + ~=[, and [o'~= + O'zzy + O'zzz[, for the case of z = 
500 m. We computed those values using both the orig- 
inal integration method and our proposed method. The 

~T 

g o  

'o 

' 2×¢o-~'  ,x~o-~ '  6×¢o-~' 8xio-3 o.ol o.o12 
Wavanumber (unit: l/m) 

' ~ , i n a l ' ( z = 5 o o A  
Original (z = 550 m) \ 

\ 

]I ..... 
(z = 500 and 550 m) 

I 
0 . 014  

Figure 10. Same as Figure 9 but for try=. The 
integrands by the original method show increasing 
oscillations with wavenumber, while those by our 
method show quickly decreasing oscillations. 

displacements by our method show faster and more sta- 
ble convergence with increasing upper limit. The stresses 
by our method quickly converge as the upper limit in- 
creases, whereas those by the original method diverge. 
Similarly, Figure 12 shows the displacements and stresses 
in the case of z = 550 m. Again, we see much faster 
convergences in the results by our method, especially for 
the stresses. 

Conclus ions  

We have proposed an efficient method for comput- 
ing the static and dynamic Green's functions for a lay- 
ered half-space with sources and receivers at close depths. 
We considered both point and dipole sources. There are 
two main elements in this method. First, we can express 
Green's functions as the sum of two integrals, one being 
soluble analytically and the other needing numerical 
computation. Second, we can do efficient numerical in- 
tegrations, because the integrands converge quickly to 
zero as the wavenumber increases. We have compared 
our method to others to confirm that our method can 
significantly reduce the range of wavenumber integration 
for all cases we tried. 
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resul ts  by  our  m e t h o d  s h o w  m u c h  fas ter  c o n v e r g e n c e .  
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Appendix A 
Dynamic and Static Displacement-Stress Vectors 

We show here the dynamic and static displacement- 
stress vectors in equations (11) and (12), which are com- 
pletely free from the exponentials growing with wave- 
number and/or  frequency. We derive them using the 
generalized R / T  coefficient method (Luco and Apsel, 
1983) and the stress discontinuity (Harkrider, 1964) to 
express the boundary and source conditions, respec- 
tively. 

The dynamic displacement-stress vectors of  the jth 
layer (Vpq and/Tpq) are expressed by the downgoing and 
upgoing P and S waves in the following matrix form: 

0 

LSJ(z,h)J LE~, E~2J LC~(h)J '  

(A]) 

where 

VJq (z;h)} SJ(z;h) = ~VJ3q(z;h)} 
OJ(z;h) = [ V%(z;h) J '  [ V~(z;h) J '  

(q = x, y or z) 

I c~(h) J' tc~(h) J 

(A2) 

(A3) 

A{(z) = [exp{ ~d~(~ - zU-°)} 0 
exp{-  vJ~(z - zU-')}] 

A ~ ( z ) = [ e x p { - ~ z O ) - z ) }  0 ] 
exp{-  dt3(z °) - z)} 

(A5) 

(Re {v~} _-> O, k ~ =  to/a j, ffJ= a J ( 1 - i / 2 Q ~ ) )  

(Re {v~} => 0, k ~ =  w/ r : ,  / ~ J = f f ( 1 - i / 2 Q ~ ) )  

3/,~= ¢,~/k, y ~ =  G / k ,  x j =  2 k -  k~2/k (A6) 

for the P-SV wave, and 

DJ(z;h) = H~q(z ;h ) ,  

SJ(z;h) = HJzq(z;h), (q = x or y) (A7) 

CJd(h) -- cJp(h), C{(h) = cJp(h) (A8) 

(A9) 

A~(z) = e x p { - ~ ( z  - z(J-'))}, 

AJ(z) = exp{-vJa(z u) - z)} (A10) 

for the SH wave. In equation (A6), O~ j and Q~ are the 
P-wave velocity and the quality factor of  the P wave of 
the jth layer, respectively, and flJ and Q~ are those of 
the S wave. Note that the definition of (A4) is different 
from those of Luco and Apsel (1983) or equation (7.55) 
in Aki and Richards (1980), because of the difference 
of the normalization of the down/upgoing coefficients 
(A3). 

In the case of the static displacement-stress vectors 
(to = 0), we need to modify equations (A4) through (A10). 
Following the same procedure from equations (53) to (60) 
in Luco and Apsel (1983), we obtain 

Le~, E~2J -IxJX j -21xJv~ f fxJ . I  = / - (K j - 1) I 

L -2 %J 3) -2k 

(A4) Lk l~J(K j -- I) -2k/x j 

(K i - 1) -11 

- k  pJ(K j - 3) 2k/x j 

k ~J(~ - 1) - 2 k  f fJ  
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1 + (f qay 
rJ = I - (~j/~j)2 (A1 I) 

[ 1 
AJ(z) = - k ( z  - z (j- ')) exp{-k(z - z(J-'))} 

Using equation (A1) for the jth and j + lth layers and 
considering the continuity conditions of displacement and 
stress, we obtain the modified R / T  coefficients defined 
above as follows: 

1 exp{-k(z u) - z)} (A12) LR~ ~ A~(z) = -k(z u~ - z) 

for the P - S V  wave, and 

R (°) = - ( E l i )  - I  E~'2 A~(O) 

R:D] = / - E J 2 ] - '  [ E j '  --L'12gTJ+l]/ 

T~J i,~2~I~J+' -E{2J LE~I -,--22~']+'/J 

[aJ~ (j)) AJu+ l~z(j)) ] , 

I , 11 EJI EJ2J - t . lJk  ~-ik 
(A13) 

AJa(z) = exp{-k(z - Z(/'--I))}, 

AJ(z) = exp{-k(z °~ - z)} (A14) 

for the S H  wave. 
In equation (A1), the down/upgoing coefficients 

cJa and C{ are determined from the source and boundary 
conditions. In the following, we divide our formulation 
into three cases. 

Case 1 (the Down/Upgoing Coefficients for h # 0 
and h =< z °v-')) 

We first present the down/upgoing coefficients, in 
the case of h # 0 and h _-< z (N-l) (the source is located 
neither on the free surface nor in the underlying half- 
space). In this case, we divide the source layer (sth layer) 
into the upper (S-) and lower (S ÷) layer at the source 
depth h, and consider them as two individual layers (see 
Fig. 1). 

First, since the downgoing waves only exist in the 
underlying half-space ( j  = N + 1), we get 

C .  N+' = {0}. (A15) 

Second, we define the modified R /T  coefficients 
T~ ), R~ ), T~ ), and Ru ~ (Luco and Apsel, 1983) for the 
jth boundary between the jth and j + lth layers 

C j = R ? C  j + T? C j+' 

cJ+l = rOa? Cj  + -- .  - , ,  , d R(J) (TJ+l 

(forj  = I, 2 . . . . .  N). (A16) 

For the free surface ( j  = 0), since the reflection coef- 
ficients only exists, we define 

C~, = R (°~ C'u. (A 17) 

(forj  = 1, 2 . . . . .  N -  1) 

TSN)'/t = [ ENI+' --E1N21-1 ~ ENI A~(Z(AD)~ (A1N) 
RS J LET:' -e d LeVi 

Third, we define the generalized R / T  coefficients 
ipaog, /~o9, ip~3, and/~u °9 (Luco and Apsel, 1983) as fol- 
lows: 

C (h) = = R°2 

(forj  = 1 . . . . .  S -  1) (A19) 

c$+l(h) = Td o) CJd(h), CJ(h) = ROd') CJd(h), 

( for j  = N - 1 . . . . .  S), (A20) 

where S is the source layer. We can derive the gener- 
alized R / T  coefficients from the modified R / T  coeffi- 
cients using the following recurrence relations: 

/~(0) = o(0) (forj 0) u l " u  , 

7 ~u3 = (I _ .Id]~(])~t'u]~(J-l)~-l] TU) 

~u~ = R~ + TOd ~ ~ u - , ) f u )  

(forj  = 1 . . . . .  S -  1) (A21) 

for the layers upper than the source, and 

fp(m = T(am, l~(U) = R(am, (forj  = N) 

Ta °) = (I - ~',ui°(J')]°(J+l)'l-ll',d ] T O) 

(forj  = N - 1 . . . . .  S) (A22) 

for the layers lower than the source. I is the identity ma- 
trix. 

Fourth, in order to obtain the down/upgoing coef- 
ficients of the Sth layer, we introduce "the stress dis- 
continuities" (Harkrider, 1964) at the boundary between 
the S- and S + layers to express the source conditions 
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where 

ss+(h) J I s s - ( h ) J  + AQq ' 

(q = x, y, or z) 

_ k  Qx - Qy 

Aax = , Aay = 

(A23) 

(A24) 

for the P-SV  wave, and 

k k 
AQx = - ~  Q~, AQy = -2----~ Qy (A25) 

for the SH wave. Using equation (A1) for the S- and S + 
layers and considering (A23), we finally obtain the down/ 
upgoing coefficients of the two layers 

CuS-(h) = (B s+ D s - BS-) -1AQq, 

cS+(h) = D s C~-(h), 

CSd-(h) = /~(u S-I) cs-(h)r~ 

C~+(h) = ~ C~+(h), 

(q = x, y, or z) 

(A26) 

where 

A s- = ESl ~,aAs-tt'~,,J ,,u~(S-l) + ES2, 

A s+ = E s, + ES2 AS+(h)/~a s) 

B s- = ESl AS-n,a £,~s-1) s~a ~,,),,u + ES2, 

B s+ = E s, + ES2 AS+(h)/~a s~ 

D s = (AS+) -1 A s-.  (A27) 

Finally, we obtain the down/upgoing coefficients of 
all layers by substituting (A26) into (A19) and (A20). 

Case 2 (the Down/Upgoing Coefficients 
for h = 0) 

When the source is located on the free surface (S = 
1 and h = 0), we need to slightly modify our formula- 
tion. We first derive all modified and generalized R/T  
coefficients using equations (A18) and (A22), respec- 

tively. Second, instead of (A23), we use the following 
source condition: 

Sl(h = O) = A Q q ,  (q = x, y, or z). (A28) 

Substituting (A28) and (A20) in equation (A1) of the 
first layer, we get the downgoing coefficient in the first 
layer 

C 1 = (EI~ + E~2 A~(0) R(dl)) -1 AQq, 

(q = x, y, or z). (A29) 

All the other coefficients are obtained by (A20). 

Case 3 (the Down/Upgoing Coefficients 
for h >= z (N-I)) 

When the source is located in the underlying half- 
space (S = N + 1 and h >= zm)), we first divide the 
underlying half-space into the upper layer (N + 1-) and 
the lower half-space (N + 1 +) at the source depth, and 
then derive the modified and generalized R /T  coeffi- 
cients for all boundaries between adjacent layers using 
equations (A18) and (A21). Second, we introduce "the 
stress discontinuities" at the boundary, as done in (A23). 

{ DN+I+(h)'~ ~DN+I-(h)~ { 0 } 
sN+'+(h)J = [.sN+I-(h)J + AQq ' 

(q = x, y, or z). (A30) 

In the lower half-space (N + 1+), since only the 
downgoing waves exist, 

C N+I+ = {0}. (A31) 

Using equation (A1) for the N + 1- and N + 1 + 
layers and considering (A30) and (A31), we finally ob- 
tain the down/upgoing coefficients of the two layers 

CN+I-, (h) = (BN+I+D~+I- -- BN+I-) -1 Aaq, 

(q = x, y, or z) 

C~+~+(h ) DU+~ N+~- = C,, (h), (A32) 

where 

A N+t = E ~ - '  Aa N+I- (h) l~ T + E ~ f ' ,  A N+'+ r,N+, 

B N+'- = E ~ - '  aaN+'-(h) 1~ N) + E ~ ; ' ,  B N+'+ r'N+, 

D N+~ = (AN+'+) -1 a u+l-. (A33) 

The all other coefficients are obtained from (A19). 

Appendix B 
Asymptot ic  Solutions of  the Displacement-Stress 

Vectors 

We derive the asymptotic solutions of the displace- 
ment-stress vectors at large wavenumbers, using the 
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equations given in Appendix A. Since the dynamic dis- 
placement-stress vectors converge to the static ones with 
increasing wavenumber as shown in Luco and Apsel 
(1983), we use the static displacement-stress vectors in 
the following. 

As k tends toward infinity, the highest orders of k 
in equation (All)  and (A13) are 

E~I and E~2 "~ o(k°), 

E~I and E~2 ~ o(kl). (B1) 

Those in (A12) and (A14) are 

A§---> o(k °) (for z = z ¢J-1)) or 0 (for z # zO-~)), 

A~ ~ o(k °) (for z = z (J)) or 0 (for z # z~3). (B2) 

Case 1 (the Down/Upgoing Coefficients for h # 0 
and h =< z (N-°) 

From (B1) and (B2), we find the modified R/T 
coefficients given in (A18) converge to zero with in- 
creasing wavenumber 

R(0) ._> 0, u 

T0) o(s) T~), and R~ ) ----> 0, 
d , l " u  ) 

T(e m and R(d m ---> 0. 

( j =  1,2 . . . . .  N -  1) 

(B3) 

Therefore, the generalized R/T coefficients given in (A21) 
and (A22) also 

/~(o).__> 0, 

7~a ~ , / ~ ? ,  7~?, and/~a ~) --> 0, 

7~(dm and/~m ----> 0. 

( j  = 1, 2 . . . . .  N -  1) 

(B4) 

This indicates that the amplitudes of all the reflected and 
transmitted waves from boundaries converge to zero with 
wavenumber. 

On the other hand, the highest orders of k of the 
source term in (A24) and (A25) are 

AQq ~ o(kl), (q = x, y, and z). (B5) 

Using (B2) and (B4), those of the coefficients in (A27) 
are 

A s- .._> ES2 ~ o(k°), A s+ ___> E s, --> o(k°), 

B s- --~ ES2 ~ o(k'), B s+ --> E s, --> o(ka), 

D s ~ o(k°). (B6) 

Therefore, the orders of the down/upgoing coefficients 
of the S- and S + layers in (A26) are 

c ~ -  ~ o(k°), c s+ ~ o(k°), 

cS---) 0, cS+--> 0. (B7) 

Substituting (B1) and (B7) into (A1) of the S- and 
S + layers, we get the highest orders of k of the displace- 
ment-stress vectors in the source layers 

/ o o 

°) A:-(z) 1 
Lo(k') AS-(z)J ' 

{oS+(z;h)l o o 

--> ~ o(k °) A s+ (z)~ (B8) 

[o(k') AS+(z)J" 

Case 2 (the Down/Upgoing Coefficients 
for h = 0) 

Similarly, we obtain the highest orders of k of the 
displacement-stress vectors in the source layer (the first 
layer) 

z> L]{o:0>} 
S'(z,h) J [_o(k') o(k')J 

(o(k l) A~(z)J" 

Case 3 (the Down/Upgoing Coefficients 
for h -> z (N-l)) 

Similarly, we obtain 

(B9) 

ro,, 0> ° ,z> 
sN+'-(z ,h)J [o(k 1) o(k')J 

. l o l  
o(k o) "-9 [o(k 1) A.U+l-(z)J ' 

DN+l+(z;h) ~ ~o(k °) AN+I I (z)o(k °) 

SU+'+(z;h) J ~ [o(k') A~ '+1 (z) o(k°)J 

[o(k ' )  A~ +' (z)J" 

A~+O-(z)] 

(B 1 O) 

Using the equations from (B8) to (B10) and (A12) 
and (A14), we can summarize the asymptotic solutions 
of the displacement-stress vectors for the source layer in 
the following forms: 
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