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A Theoretical Omega-Square Model Considering the Spatial Variation

in Slip and Rupture Velocity

by Yoshiaki Hisada

Abstract A theoretical model for constructing the x-squared model is proposed
by modifying the k-squared model of Bernard et al. (1996). The k-squared model
provides a theoretical basis for the empirical x-squared model under the assumptions
that (1) the spatial wavenumber spectrum of the slip distribution falls off as the
inverse of the wavenumber squared (k-squared), (2) the Fourier amplitudes of the
slip velocity are independent of x at high frequencies, and (3) the rupture velocity
is constant. In this study, a more realistic model is proposed by modifying the last
two assumptions. First, a Kostrov-type slip velocity model is proposed by superpos-
ing equilateral triangles, in which a source-controlled fmax is imposed by the mini-
mum duration among the triangles. The Fourier amplitude of our slip velocity model
falls off as the inverse of x at high frequencies less than fmax. Next, in order to
model variable rupture velocities, the incoherent rupture time (Dtr), namely, the dif-
ference between the actual rupture time and the coherent (average) rupture time, is
introduced. After checking various models for Dtr distributions, the k-squared model
for Dtr, similar to that for the slip distributions of the k-squared model, is found to
be the most plausible. Finally, it is confirmed that the proposed source model (we
call it as the x-inverse-squared model), which consists of the combination of the slip
velocity proposed here and the k-squared distributions for both slip and Dtr, not only
is consistent with the empirical x-squared model, but also provides the theoretical
basis for constructing realistic source models at broadband frequencies.

Introduction

Since the pioneering work of Aki (1967) to construct
the scaling law of seismic source spectra, the x-squared
model has been the most widely used empirical tool for pre-
dicting strong ground motions (e.g., Aki, 1972; Hanks,
1979; Hanks and McGuire, 1981; Boore, 1983; Joyner,
1984; Irikura, 1986). Originally, its spectrum was rather sim-
ple, with one or two corner frequencies corresponding to the
fault dimension and/or the rise time using smooth and ho-
mogeneous faulting models (Haskell, 1964; Kostrov, 1964;
Brune, 1970; Madariaga, 1976). Later, a cut-off frequency,
fmax, was introduced to reproduce the steep falloff of the
observational spectra at higher frequencies (Hanks, 1979,
1982). On the other hand, observational and numerical re-
sults have shown that earthquake source processes are highly
heterogeneous. Thus, barrier/asperity models were proposed
to include the added complexities (Das and Aki, 1977; Kan-
amori and Stewart, 1978; Mikumo and Miyatake, 1978;
Boatwright, 1982). Subsequently, the x-squared model has
been modified by including the so-called patch corner fre-
quencies, which correspond to the barrier/asperity size (e.g.,
Gusev, 1983; Papageorgiou and Aki, 1983; Koyama, 1985).

Recently, Herrero and Bernard (1994) and Bernard et

al. (1996) proposed the k-squared model as a theoretical x-
squared model. The main assumption of this model is that
the spatial wavenumber spectrum of the final slip distribu-
tion falls off as the inverse of the wavenumber squared (k-
squared). This model yields a stress drop independent of
seismic moment, which is consistent with the stochastic
model of Andrews (1981) and the fractal model of Frankel
(1991) with the fractal dimension of 2. In addition, Somer-
ville et al. (1999) found that slip distributions derived from
source inversion studies using strong motion records are
consistent with the k-squared model up to about 1 Hz. The
k-squared model is also consistent with the x-squared model
under the assumptions of constant rupture velocity and scale-
dependent rise time (Bernard et al., 1996). However, the
actual rupture velocity probably fluctuates significantly in
realistic situations (Das and Aki, 1977; Mikumo and Miya-
take, 1978; Archuleta, 1982). Since the fluctuation of the
rupture front excites strong high-frequency waves (e.g., Ma-
dariaga, 1977), the k-squared model should be modified in
order to construct a more realistic x-squared model.

The purpose of this study is to propose a theoretical x-
squared model. For this, we will modify the k-squared model
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Figure 1. Geometry of a unilateral source and an
observation station in the far-field (top), and modeling
of variable rupture time using the incoherent rupture
time Dt (bottom).

of Bernard et al. (1996) by considering realistic spatial var-
iations in both slip and rupture velocities. This article con-
sists of five sections. First, I show the formulation of the far-
field displacement using a unilateral source model. Second,
I briefly review the formulation of the k-squared model.
Third, I propose a realistic and practical slip velocity model
by considering the results from dynamic source modelings
and laboratory experiments. Fourth, I introduce the effects
of the variable rupture velocities in the model using the in-
coherent rupture time. Finally, I propose a “omega-inverse-
squared model” for constructing the x-squared model, and
discuss its characteristics in comparison with the k-squared
model and the empirical x-squared model.

Source Spectra for Far-Field Displacements

Following Bernard et al. (1996), I consider a 1-D fault
model with unilateral rupture propagation, embedded in a
homogeneous full-space (Fig. 1). The far-field displace-
ments, Ui , at a station Y from this source model can be
written as

RiU (Y; x) 4 M (x), (1)i o34pqrc

where x is the circular frequency, the subscript i denotes the
ith component in the spherical coordinate system, and Ri is
the radiation pattern for the ith component. The variable c
is the medium velocity (VP for the radial, and VS for the
transverse and vertical directions), q is the density, and r is
the distance from the rupture front, x, to Y. Mo in equation
(1) is the source spectrum (e.g., Dan and Sato, 1999), and is
expressed as

L

M (x) 4 lW V(x;x) exp{ix(t ` t )}dx, (2)o c r#
0

where, l is the rigidity, V is the Fourier transform of the slip
velocity at a specific point x on the fault plane, and W and
L are the width and length of the fault, respectively. In equa-
tion (2), tc and tr are the arrival time of the seismic waves
and the rupture time, respectively, and are given as follows:

r r 1 x •cos h0t 4 ' , (x K r ) (3)c 0c c

and,

xt 4 ` Dt (x). (4)r rV̄r

where, r0 is the distance from the origin of the rupture front
to Y, h is the angle between the directions of the rupture
propagation and the seismic waves, and V¢r is the average
rupture velocity. As shown in equation (4), I divide the rup-

ture time tr into the coherent (average) rupture time and the
incoherent rupture time Dtr. I introduce Dtr to include the
effects of fluctuations at the rupture front (see Figure 1). For
convenience, I express the slip velocity function V by the
product of the slip (dislocation) and the slip velocity function
of the unit dislocation.

V(x;x) 4 D(x)F (x;x) (5)V

Substituting equations (3), (4), and (5) into equation (2),
I obtain the following source spectra,

L

M (x) 4 lW exp(ixr /c) D(x)F (x;x)o o V#
0 (6)

x
exp ix ` Dt dx,r5 1 26V̄ Cr d

where, Cd is the directivity coefficient (Ben-Menahem,
1961),
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1
C 4 . (7)d V̄r

1 1 • cos hc

K-Squared Model with Scale-Dependent Rise Time

Here I briefly explain the k-squared model (Herrero and
Bernard, 1994; Bernard et al., 1996) and discuss some physi-
cal problems that suggest the need to modify this model.

The main assumptions for the k-squared model are as
follows:

a. The Fourier amplitudes of spatial wavenumber (k) spectra
of the slip distribution D decay as k12.

b. The slip velocity function FV is the rectangular boxcar
whose rise time is inversely proportional to wavenumber
(or frequency) at high frequencies. This assures fre-
quency-independent Fourier amplitudes of FV, as will be
shown below.

c. The rupture velocity Vr is constant, namely Dtr 4 0 in
equation (6).

Assumption (a) is based on the self-similarity of the
spatial distribution of the slip, and this explains a stress drop
independent of seismic moment and fault size. Assumptions
(b) and (c) were introduced to produce the x-squared model.
Regarding assumption (b), Herrero and Bernard (1994) orig-
inally adopted the delta function (instantaneous slip), but
later Bernard et al. (1996) used the rectangular boxcar with
the scale-dependent (or, frequency-dependent) rise time. The
slip-velocity function FV of the boxcar can be expressed as
follows,

sin vs ivsF (x;x) 4 e , (8)V
vs

xs(x;x)
where, v 4 (9)s 2

Using assumption (b), the rise time s is inversely pro-
portional to x (or wavenumber) at high frequencies, as
follows,

s , (x # 2paC /s )max d max
s(x; x) 4 (10)2paCd5 , (x $ 2paC /s )d maxx

¢with s 4 L /Vmax 0 r

where smax is the total slip duration at x, and L0 is some
characteristic dimension representing the barrier/asperity
size. A nondimensional coefficient, a, is the ratio of the local
rise time over the propagation time of the average rupture
front along a wavelength (Bernard et al., 1996); this coef-
ficient was introduced to incorporate the observed short slip
duration (Heaton, 1990).

Substituting equations (8), (9), and (10) into equation
(6), and changing the bounds of the integration, the source
spectrum can be expressed as:

M (x)o (11)
``

4 lWF exp(ixr /c) D(x) exp(2pikx)dx,V o #
1`

x f
with k 4 4 , (12)¯ ¯2pC V C Vd r d r

sin(pfs )max , ( f # f )0
pfsmax

and F ( f ) 4 , (13)V
sin (paC )d5 , ( f $ f )0

paCd

with f 4 aC /s0 d max

The spectrum amplitudes of slip velocity function (equation
[13]) are independent of frequency for frequencies greater
than f 0. It should be noted that equation (13) can lead to
unrealistic results for aCd 4 1; is zero for f $ f 0.FV

The integration in equation (11) is the Fourier transform
of the slip distribution with respect to the wavenumber. Un-
der assumption (a), Herrero and Bernard (1994) proposed
the following integrand:

``
¯D(x) exp(2pikx)dx 4 DL F (k)ph#

1`

1, (k # 1/L)
2 (14)15 , (k $ 1/L)2(kL)

where D̄ is the average slip over the fault plane, and Fph is
a phase function with unit amplitude.

Finally, the source spectrum of the k-squared model is
obtained by substituting equations (12) and (14) into (11).
Using frequency f instead of x, the source spectrum can be
expressed as

M ( f ) 4 M F exp(2pfir /c)F ( f )o 0 V o ph

1, (f # f )C V̄ Cr d
2 , with f 4 (15)2 CfC L5 , ( f $ f )C1 2f

where is the seismic moment (4 lD̄LW; D̄ is the averageM0

slip). Combining equations (13) and (15), the k-squared
model yields the x-squared model with two corner frequen-
cies ( f 0 and fC: usually f 0 . fC).

On the other hand, the k-squared model is based on two
physically unrealistic assumptions: (1) the boxcar model for
the slip velocity, and (2) a constant rupture velocity. The
Fourier amplitude of a boxcar falls off as the inverse of x,
and generates infinite slip accelerations at the starting and
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stopping phases. To produce finite accelerations, smoother
slip velocities have to be used, such as a combination of
triangles as used for source inversion studies. Since the Fou-
rier amplitudes of triangles fall off as the inverse of x-
squared, it is difficult to model the amplitudes of slip veloc-
ity as being independent of x. Consequently, the variable
rupture velocity should be incorporated to excite high-
frequency waves. Next, I investigate the effects of a more
realistic slip velocity, together with a variable rupture
velocity.

Modification of K-Squared Model Considering
Realistic Slip Velocity and Variable Rupture

Velocity

Fourier Amplitude Spectra of a Realistic Slip
Velocity Function

An analytic solution for the slip velocity was derived
by Kostrov (1964) using a self-similar circular crack. Its
amplitude in time history is infinite at the crack tip, and falls
off as the inverse of a square root of time. More realistically,
dynamic source modeling and laboratory experiments on
rock indicate that the slip velocity exhibits a sharp rise with
a finite amplitude and is followed by a relatively smooth
decay (e.g., Madariaga, 1976, 1977; Day, 1982; Ohnaka and
Kuwahara, 1990; Miyatake, 1998). The finiteness of the ve-
locity amplitude at the crack tip is probably caused by non-
linear breakdown processes, such as local yielding (e.g.,
Madariaga, 1977). Accordingly, it may cause the source-
controlled f max (Papageorgiou and Aki, 1983).

In order to construct the realistic slip velocity functions,
I adopt a simple and practical model. As shown in Figure 2,
I construct the slip velocity function fv by superimposing
equilateral triangles with different durations. In the time do-
main, it can be written as follows;

N NV V
1 j11 j11˙f (x; t) 4 A f (x; t) with A 4 A , (16)V o r j o r

j41 j41A

where NV is the total number of the triangles, Ar is the ratio
of the area of the jth triangle with respect to the area of the
j1lth triangle.

In equation (16), is the equilateral triangle of the jthḟj

element,

A t, (t # s /2)j j

ḟ (x; t) 4 A (s 1 t), (s /2 # t # s ) (17)j j j j j5 0, (s # l)j

with A 4 2V /s , and V 4 2/s . (18)j j j j j

Aj and Vj are the maximum acceleration and velocity of the
jth triangle, respectively. sj is the duration of the jth triangle,
and I adopt here the following values,

j112 1
s 4 , with s [ s 4 ,j min 1f fmax max (19)

N 11m2
and s [ sN , 4max m fmax

where I use a coefficient of the j-1th power of 2 to avoid the
artificial peaks and troughs not only in the time domain (see
Figure 2), but also in the frequency domain (Fig. 3). Note
that, the reciprocal of the minimum duration (s1) gives a
source-controlled f max as shown subsequently. smax is the
total duration of the slip, which would be controlled by the
characteristic size of barrier/asperity and/or the healing front
(Heaton, 1990).

The slip displacement and acceleration functions are
easily obtained by replacing in equation (16) byḟj

f (x; t)j
22(t/s ) , (t # s /2)j j

24 0.5{1 ` (2t1s )(3s 12t) s } (s /2 # t # s ),j j / j j j5 1, (s # t)j

(20)

for displacement, and

A , (t # s /2)j j

f̈ (x; t) 4 1A , (s /2 # t # s ) (21)j j j j5 0, (s # t)j

for acceleration.
Figure 2 shows examples for slip velocities and dis-

placements in the following four cases, for fmax 4 10 Hz
(s1 4 0.1 sec),

Case (A) NV 4 3 and Ar 4 1.0,
Case (B) NV 4 3 and Ar 4 2!
Case (C) NV 4 5 and Ar 4 1.0,
Case (D) NV 4 5 and Ar 4 .2!

The total slip durations (smax) for NV 4 3 and 5 are 0.4
and 1.6 seconds, respectively. The velocity for the smaller
NV and Ar shows the sharper and larger peak velocity. The
velocities for Ar 4 decay as 1/ , which is consistent2 t! !
with Kostrov’s slip velocity. Although it is not shown, the
slip velocity for Ar 4 2 is a scalene triangle, which seems
unrealistic as compared with the Kostrov-type slip velocity.
On the other hand, results for Ar , 1.0 show unrealistically
large slip velocities and accelerations for f max 4 10 Hz.
Thus, Ar probably should take a value between 1 and 2.

The Fourier transform of equation (16) can be obtained
analytically:

N 2m sin v1 jj11F (x; x) 4 A exp(iv ) ,m o r j5 6A vj41 j (22)
xsjand v 4j 4
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Figure 2. The slip velocities (thick black lines) and displacements (thick gray lines)
for four cases. The slip velocities consist of equilateral triangles with different durations
(thin lines). The reciprocal of the minimum duration among triangles generates the
source-controlled fmax. The maximum duration smax among triangles equals to the total
slip duration at a point on a fault plane, and the reciprocal of the double of smax is
nearly equal to the first corner frequency f1 (see Fig. 3).

Note that the Fourier amplitude of each triangle has an x12

decay.
Figure 3 shows the Fourier amplitudes of the slip ve-

locities and accelerations corresponding to those in Figure
2. The amplitudes of all the slip velocities have two corner
frequencies; f 1 ' 1/2smax and f max. The spectra are constant
for frequencies lower than f 1, fall off as the inverse of x
between f 1 and f max and then fall off as the inverse of x-
squared at frequencies greater than f max. It is easy to control
the spectrum shape and amplitude by changing these fre-
quencies. In addition, the spectra do not exhibit artificial

sharp peaks and troughs at frequencies lower than f max,
which would be advantageous for predicting strong motions.

Source Spectra Considering Variable Rupture Velocity

To investigate the effect of the variable rupture velocity
on the source spectra, I evaluate the source spectra for Dtr
? 0, by assuming temporarily the instantaneous slip (FV (x,
x) 4 1) in equation (6). The source spectra can be

L x
S(x) 4 D(x) exp ix ` Dt dx. (23)r# 5 1 26¯0 V Cr d
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Figure 3. The Fourier amplitude spectra of the slip velocities for the four cases
shown in Figure 2. The Fourier spectra of the slip accelerations are also shown in gray
lines. Note that the velocity spectra fall off as the inverse of x between f1 and fmax.

Here I use the simplest k-squared slip distribution,
namely, the equilateral triangle,

2D x/L, (0 # x # L/2)mD(x) 4 (24)52D (L 1 x)/L, (L/2 # x # L)m

where Dm is the maximum slip at the center. For the constant
rupture velocity (Dtr 4 0), the analytical solution can be
obtained by substituting equation (24) into equation (23),

2LD sin v xLm s ivsS(x) 4 e with v 4 (25)s5 6 ¯2 v 4V Cs r d

Note that the Fourier amplitude of equation (25) has the x12

decay at high frequencies; this would be the simplest k-
squared model.

In order to evaluate equation (23) for Dtr ? 0, I subdi-
vide the fault length L into small segments DLj (see Figure
1), and carry out the analytic integration on each subfault,

xjNL x¯S(x) 4 D exp ix ` Dt dx,o j rj# 5 1 26¯j41 x V Cj11 r d

NL sin v x̄j j¯4 D DL exp ix ` Dt , (26)o j j rj5 1 26¯j41 v V Cj r d

xDL x ` xj j11 jwith v 4 , and x̄ 4 . (27)j j¯2V C 2r d
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where NL is the total number of subfaults. Note that the
source spectrum S is the superposition of the functions with
the x11 decay.

As an example, I will use the following parameters to
compute the source spectra up to 20 Hz: L 4 10 (km), and
Dm 4 1 (m), NL 4 2000, Cd 4 1, and V¢r 4 2.5 (km/s).

First, I check the very basic effects of Dtr using the
following two simple cases:

1. As shown in the left of Figure 4a, the rupture stops
abruptly at the center of the fault for Dt second, then
continues to rupture. Thus, Dtr is expressed as,

0, (0 # x # L/2)
Dt 4 (28a)r 5Dt, (L/2 # x # L)

2. As shown in the right of Figure 4a, the rupture stops and
starts two times. Thus, Dtr is expressed as,

0, (0 # x # L/4, and L/2 # x # 3L/4)
Dt 4r 5Dt, (L/4 # x # L/2, and 3L/4 # x # L)

(28b)

Figure 4b and 4c show the source spectra and their
waveforms (i.e., the source time functions), respectively, for
cases 1 and 2. The amplitudes of the source spectra are mul-
tiplied by x, and thus the constant amplitude represents the
x11 decay. The source time functions in Figure 4c corre-
spond to the displacement waveforms in the far-field. For
reference, I plot the source spectra and the source time func-
tions of the k-squared model using equation (25) by gray
lines (Case 0; Dt 4 0) in the figures. For Case 1, the abrupt
stop at the center of the fault for Dt second excites large
high-frequency waves, and its spectrum shows the x11 de-
cay with frequency. The source time function shows the ex-
tremely strong stopping phases, which seem unrealistic.
Similarly, the spectrum for case 2 shows the x11 decay at
high frequencies, but note that the maximum amplitudes are
twice as large as those of case 1. The waveform shows the
unrealistically strong stopping and starting phases at three
locations. The abrupt stops and starts along the whole rup-
ture front cause mathematical singularities and the results
are physically unacceptable.

Next, I investigate the following more realistic three
models considering smooth Dtr distributions: the k-inversed,
k-squared, and k-cubed models.

The k-inversed model for Dtr. The distribution of Dtr is
assumed to be inversely proportional to the spatial wave-
number k. I construct this k-inversed model by superposing
the cos functions, as follows.

M
Dt x

Dt (x) 4 cos 2pm ` h (28c)r o m1 22 L1 ` mm41 !

where hm is a random phase between 0 and 2p (radians), m
is the wavenumber normalized by the fault length, and M is
the maximum value of m. MV¢r/L gives the limit of resolution
in frequency.

The k-squared model for Dtr. The Dtr distribution is as-
sumed to be inversely proportional to k-squared. Similar to
the k-inversed model, I construct the model by superposing
the cos functions, as follows.

M
Dt x

Dt (x) 4 cos 2pm ` h (28d)r o m1 24 Lm41 1 ` m!

The k-cubed model for Dtr. The Dtr distribution is assumed
to be inversely proportional to k-cubed. Similarly, I construct
the model as follows.

M
Dt x

Dt (x) 4 cos 2pm ` h (28e)r o m1 26 Lm41 1 ` m!

Figure 5 shows the amplitudes of the k-inversed, k-squared,
and k-cubed models by normalizing by Dt.

Figure 6a shows examples for Dtr distributions using
the k-inversed, k-squared, and k-cubed models. I use Dt 4
0.1(sec), which is 1/40 of the total duration (L/V¢r 4 4 sec-
ond), and M 4 500 in equations (28c) to (28e), together
with the same source parameters in cases 1 and 2. Figure 6b
shows the source spectra corresponding to the three models
in Figure 6a. Similarly to Figure 4b, the amplitudes of the
source spectra are multiplied by x. The high-frequency am-
plitudes are nearly constant for the k-inversed model, fall off
as the inverse of x for the k-squared model, and fall off as
the inverse of the x-squared for the k-cubed model. Figure
6c shows the source time functions for the three models. For
reference, I plot the functions for Dt 4 0 using equation
(27) by gray lines in the figure. The waveform of the k-
inverse model shows unrealistically strong and incoherent
high-frequency waves; it is hard to identify the coherent
waveform of the gray line. In contrast, the source time func-
tion for the k-squared model shows the high-frequency fluc-
tuations around the coherent waveform, which seems real-
istic. The functions of the k-cubed model does not show
incoherent high-frequency fluctuations; the smooth fluctua-
tion corresponds to the sin-type Dt seen in Figure 6a. Based
on general expectations, the result of the k-squared model
seems the most plausible.

Finally, I investigate the effect of Dtr on the k-squared
model by changing the amplitude Dt in equation (28d). Fig-
ure 7a shows the source spectra for Dt 4 0.1, 0.2, 0.4, and
0.8 seconds, which correspond to 1/40, 1/20, 1/10, and 1/5
of the total duration, respectively. The Fourier spectra in-
crease with increasing Dt at high frequencies, and show x11

decay except for Dt 4 0.8. The high-frequency spectrum for
Dt 4 0.8 is independent of x. Figure 7b depicts the source
time functions, which show the larger high-frequency fluc-
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Figure 4. The incoherent rupture time Dtr for two cases (top), and their source spec-
tra (middle) and corresponding source time functions (bottom). The rupture stops
abruptly at the center of the fault for Dt second for case 1, and the rupture stops and
starts twice for case 2. The amplitudes of the source spectra are multiplied by x, and
thus the constant amplitude represents the x11 decay. Gray lines indicate the case for
the coherent rupture time (Case 0; Dt 4 0).
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Figure 5. The normalized amplitudes of the
k-inverse, k-square, and k-cube models for the
Dtr distributions.

tuations for the larger Dt. In particular, the functions for Dt
4 0.4 and 0.8 show unacceptably incoherent fluctuations.
Thus, a Dt between 1/40 and 1/20 of the total duration may
be appropriate.

Discussion

From the results presented here, it appears that the most
appropriate x-squared model consists of the slip-velocity
model with k-squared spatial distributions in slip and inco-
herent rupture time, Dtr. I call this model the x-inverse-
squared model, because the x-squared source spectra consist
of the two x-inverse models due to the slip velocity and the
spatial variations, as discussed below.

Figure 8a and 8b shows schematic explanations for
modeling the x-squared source spectra using the k-squared
model of Bernard et al. (1996) and by the x-inverse-squared
model, respectively. There are two main differences between
the two models. The first is the modeling of slip velocity.
The slip velocity of the former consists of the scale-depen-
dent rectangular boxcars. In addition, this model allows the
duration of boxcars to be infinitely small at the highest fre-
quency; this is equivalent to the Dirac delta function, whose
Fourier amplitude is constant with x. Consequently, the
Fourier amplitude of the slip velocity becomes independent
of x. On the other hand, the slip velocity of the x-inverse-
squared model consists of triangles. As discussed earlier, the
finite acceleration amplitudes of the triangles are physically
more appropriate than the boxcars. In addition, this model
introduces a minimum duration among the triangles, whose
reciprocal represents the source-controlled f max. Thus, the
Fourier amplitude of our slip velocity model falls off as the
inverse of x up to f max, and as the inverse of x-squared at
frequencies higher than f max. Even though it is still a matter
for argument whether f max is caused by the source or site
effects (Hanks, 1979, 1981; Anderson and Hough, 1984; Pa-
pageorgiou and Aki, 1985), it seems natural to have a corner

frequency controlled by smoothness in the slip velocity; oth-
erwise the slip acceleration could be unacceptably large. The
x11 decay of the source spectra of the slip velocity agrees
with the empirical model derived by Dan and Sato (1999),
although the latter is restricted to rather longer periods.

The other difference between the k-squared model and
the x-inverse-squared model is the modeling of rupture ve-
locity. The rupture velocity of the former is constant,
whereas the latter is variable. As discussed earlier, the vari-
able rupture velocity is more realistic, and it generates high-
frequency waves efficiently. To model those effects, I intro-
duced the incoherent rupture times Dtr, and found that the
k-squared model for Dtr distribution seemed the most plau-
sible among the k-inversed, k-squared, and k-cubed models.
The similar k-squared distributions for slip and Dtr may sug-
gest some physical relationship between them.

As shown in the Figure 8b, the source spectrum of the
x-inverse-squared model falls off as the inverse of x under
the assumption of the instantaneous slip (delta function as
velocity) with the k-squared slip distributions. Since the
source spectrum is expressed by the convolution of the slip
velocity and the source spectrum with instantaneous slip, the
source spectrum of this model falls off as the inverse of x-
squared up to f max (namely, the x-squared model).

Finally, Figure 9 shows the comparison of source ac-
celeration spectra among the k-squared model, the x-
inverse-squared model, and an empirical x-squared model
using the same source parameters in the previous section (L
4 10 km, Dm 4 1 m, Cd 4 1, NL 4 2000, V¢r 4 2.5 km/
s, M 4 500, and fmax 4 10 Hz). All the spectra are nor-
malized by the seismic moment. For the k-squared model, I
use equations (13) and (15) with a 4 0.5 and L0 4 0.2L (a
broad-pulse model; Bernard et al., 1996), whose corner fre-
quency (f 0 4 aV¢r/L0) is 0.625 Hz. For the x-inverse-squared
model, I show one example among many choices for the
combinations for the slip velocities and the Dtr distributions,
because the all results show similar x-squared source spec-
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Figure 6. (a) The incoherent rupture time Dtr for the k-inversed, k-squared, and k-
cubed models, and (b) their source spectra and (c) the source time functions. The
amplitudes of the source spectra are multiplied by x, and gray lines indicate the case
for the coherent rupture time (Dt 4 0).

tra. The parameters for our model are , Nr 4 4Ar 4 2!
(smax 4 0.8 sec and f 1 40.63 Hz), and Dt 4 0.2 sec. As
for the k-squared Dtr distributions, I generate one hundred
sets of random phases in equation (28d), and show the av-
erage of source spectra with the standard deviations in the
figure. For the empirical x-squared model, I use Brune’s
model (1970) with f max 4 10 Hz (Boore, 1983) and the
corner frequencies fc 4 0.147 Hz (for Dr 4 50) and 0.234
Hz (for Dr 4 200) under the values of W 4 L/2, Vs 4 3.8
km/sec, and Mo 4 1.01 2 1026 dyne cm. As compared with
Brune’s model, the k-squared model and the x-inverse-

squared model show rather larger amplitudes at lower and
higher frequencies, respectively. However, all the spectra
shows similar x-squared amplitudes at high frequencies,
overall.

In summary, I believe that no matter which models are
used, the far-field acceleration waveforms would be similar.
However, the broad-band strong motions, especially in near
field, would be greatly different among the various models;
the unphysical assumptions may cause implausible results.
The advantage of the x-inverse-squared model is that it has
a clear physical basis for the slip velocity and the spatial
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Figure 7. (a) The source spectra of the k-
square models for Dtr for the cases of Dt 4
0.1, 0.2, 0.4, and 0.8 seconds, and (b) the cor-
responding source time functions. The ampli-
tudes of the source spectra are multiplied
by x.

variations in the slip and rupture time. This model could
simulate the broadband strong motions from the near-field
displacements (coherent and low-frequency waves) to the
far-field accelerations (incoherent and high-frequency
waves).

Conclusions

I investigated the theoretical basis of the x-squared
model by modifying the k-squared model of Bernard et al.
(1996), and proposed the x-inverse-squared model by con-
sidering the spatial variation in slip distribution, slip veloc-
ity, and rupture velocity. For the slip velocity, I proposed a
Kostrov-type model by superposing equilateral triangles,
where the two corner frequencies are introduced. The first
corner frequency f 1 corresponds to the slip duration, while
the second is the source-controlled f max. The Fourier ampli-

tude of this model falls off as the inverse of x between f 1

and f max. On the other hand, for modeling the effects of the
spatial variation in rupture velocity, I introduced the inco-
herent rupture time (Dtr), namely, the difference between the
actual rupture time and the coherent (average) rupture time.
After checking various models including the k-inversed, k-
squared, and k-cubed distributions for Dtr, I found that the
k-squared model was the most plausible. I also found that
its source spectrum fell off as the inverse of x, when the slip
velocity is Delta function. Finally, I proposed the x-inverse-
squared model, which consists of the combination of the slip
velocity proposed earlier and the k-squared distributions in
slip and Dtr, and confirmed that it is consistent with the em-
pirical x-squared models. Since this model provides the
theoretical basis for constructing realistic source models at
broadband frequencies, it would be useful for predicting
strong ground motions including the near-field.
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Figure 8. Schematic explanations for modeling of the x-square model using (a) the
k-square model (Bernard et al., 1996) and (b) the x-inverse-squared model proposed
in this article. The left figures in (a) and (b) illustrate the slip velocity models and their
Fourier spectra. The middle figures show the modeling of rupture time, and their source
spectra considering the k-squared slip distributions with the instantaneous slip. As
shown in the bottom figures, the final source spectra are obtained by the convolutions
of the slip velocity models and the source spectra with the instantaneous slip. Note that
the x-inverse-squared model consists of the two x-inverse models.
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Figure 9. Comparisons of the acceleration source spectra among the k-square
model, the x-inverse-squared model, and the empirical x-square model by Brune
(1970) with fmax 4 10 Hz (Boore, 1983). As for the x-inverse-squared model, the
average value with the standard deviation are plotted using one hundred sets of random
phases in equation (28d).

Acknowledgments

I am grateful to Susan Hough, Steven Day, and an anonymous re-
viewer for helpful review and comments. Comments and suggestions by
Jacobo Bielak, Sumio Sawada, and Stewart Koyanagi are also greatly im-
proved this manuscript. This research was partly supported by a special
project of “US-Japan Cooperative Research for Urban Earthquake Disaster”
by the Ministry of Education, Science, Sports and Culture, and by Disaster
Prevention Research Institute of Kyoto University.

References

Aki, K. (1967). Scaling law of seismic spectrum, J. Geophys. Res. 72,
1217–1231.

Aki, K. (1972). Scaling law of Earthquake Source Time-Function, Geophys.
J. R. Astr. Soc. 31, 3–25.

Andrews, D. I. (1981). A stochastic fault model, 2, Time-dependent case,
J. Geophys. Res. 86, 10821–10834.

Anderson, J. G., and S. E. Hough (1984). A model for the shape of the
fourier amplitude spectrum of acceleration at high frequencies, Bull.
Seism. Soc. Am. 74, 1969–1993.

Archuleta, R. J. (1982). Analysis of near source station and dynamic mea-
surements from the 1979 Imperial Valley earthquake, Bull. Seism.
Soc. Am. 72, 1927–1956.

Ben-Menahem, A. (1961). Radiation of seismic surface waves from finite
moving sources, Bull. Seism. Soc. Am. 51, 401–435.

Bernard, P., A. Herrero, and C. Berge (1996). Modeling directivity of het-
erogeneous earthquake ruptures, Bull. Seism. Soc. Am. 86, 1149–
1160.

Boatwright, J. (1982). A dynamic model for far-field acceleration, Bull.
Seism. Soc. Am. 72, 1049–1068.

Boore, D. M. (1983). Stochastic simulation of high-frequency ground mo-
tions based on seismological models of radiated spectra, Bull. Seism.
Soc. Am. 73, 1865–1894.

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves
from earthquakes, J. Geophys. Res. 75, 4997–5009.

Dan, K., and T. Sato (1999). A semi-empirical method for simulating strong
motions based on variable-slip rupture models for large earthquakes,
Bull. Seism. Soc. Am. 89, 36–53.

Das, S., and K. Aki (1977). Fault plane with barriers: a versatile earthquake
model, Geophys. J. R. Astr. Soc. 50, 643–668.

Day, M. D. (1982). Three-dimensional finite difference simulation of fault
dynamics: rectangular faults with fixed rupture velocity, Bull. Seism.
Soc. Am. 72, 705–727.

Frankel, A. (1991). High-frequency spectral falloff of earthquakes, fractal
dimension of complex rupture, b value, and the scaling strength on
fault, J. Geophys. Res. 96, 6291–6302.

Gusev, A. A. (1983). Descriptive statistic model of earthquake source ra-
diation and its application to an estimation of short-period strong mo-
tion, Geophys. J. R. Astr. Soc. 74, 787–808.

Hanks, T. C. (1979). b value and x1c seismic source models: implication
for tectonic stress variations along active crustal fault zones and the
estimation of high frequency strong ground motion, J. Geophys. Res.
84, 2235–2242.

Hanks, T. C. (1982). fmax, Bull. Seism. Soc. Am. 72, 1867–1879.
Hanks, T. C., and R. K. McGuire. (1981). The character of high-frequency

strong ground motion, Bull. Seism. Soc. Am. 71, 2071–2095.
Haskell, N. A. (1964). Total energy and energy spectral density of elastic

wave radiation from propagating faults, Bull. Seism. Soc. Am. 54,
1811–1841.

Heaton, T. H. (1990). Evidence for and implications of self-healing pulses
of slip in earthquake rupture, Phys. Earthq. Planet. Interiors 64, 1–
20.

Herrero, A., and P. Bernard (1994). A kinematic self-similar rupture process
for earthquake, Bull. Seism. Soc. Am. 84, 1216–1228.

Irikura, K. (1986). Prediction of strong acceleration motions using empir-
ical Green’s function, Proc. 7th Japan Earthq. Symp. 151–156.

Joyner, W. (1984). A scaling law for the spectra of large earthquakes, Bull.
Seism. Soc. Am. 74, 1167–1188.



400 Y. Hisada

Kanamori, H., and G. Stewart. (1978). Seismological aspects of the Gua-
temala earthquake of February 4, 1976, J. Geophys. Res. 83, 3427–
3434.

Koyama, J. (1985). Earthquake source time-function from coherent and
incoherent rupture, Tectonophysics 118, 227–242.

Kostrov, B. V. (1964). Self-similar problems of propagation of shear cracks,
J. Appl. Math. Mech. 28, 1077–1087.

Madariaga, R. (1976). Dynamics of expanding circular fault, Bull. Seism.
Soc. Am. 66, 639–666.

Madariaga, R. (1977). High-frequency radiation from crack (stress-drop)
models of earthquake faulting, Geophys. J. R. Astr. Soc. 51, 625–651.

Mikumo, T., and T. Miyatake (1978). Dynamic rupture process on a three-
dimensional fault with non-uniform frictions and near-field seismic
waves, Geophys. J. R. Astr. Soc. 54, 417–438.

Miyatake, T. (1998). An approximate solution for slip rate and slip accel-
eration time function in dynamic rupture propagation with slip weak-
ening friction, Proc. 3rd Symp. on Urban Disaster Mitigation for near
Earthquake, 67–68 (in Japanese).

Ohnaka, M., and Y. Kuwahara (1990). Characteristic features of local

break-down near crack-tip in the transition zone from nucleation to
dynamic rupture during stick-slip shear failure, Tectonophysics 175,
197–220.

Papageorgiou, A. S., and K. Aki (1983). A specific barrier model for the
quantitative description of inhomogeneous faulting and the prediction
of strong ground motion, Bull. Seism. Soc. Am. 73, 693–722.

Somerville, P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson,
Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada (1999). Charac-
terizing crustal earthquake slip models for the prediction of strong
motion, Seism. Res. Lett. 70, 59–80.

Department of Architecture
Kogakuin University
Nishi-Shinjuku 1-24-2
Tokyo 163-8677, Japan
hisada@cc.kogakuin.ac.jp

Manuscript received 15 June 1999.


