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A HYBRID METHOD FOR PREDICTING STRONG GROUND MOTIONSAT
BROAD-FREQUENCIESNEAR M8 EARTHQAUKESIN SUBDUCTION ZONES

Yoshiaki HISADA*®

SUMMARY

The near-field strong motions during the 1985 Michoacan earthquake (M8) are successfully
simulated at broadband frequencies. For the simulation at low frequencies (0O to 1 Hz), the
modified k-sguare model (Hisada, 1999) is used by considering the k-squared (wavenumber-
sguared) distributions of dip (Mendoza and Hartzell, 1989) and the incoherent rupture time. For
modeling the dip velocity, the Kostrov-type function with fmax of 10 Hz is adopted. The
simulated results reproduced well the observed long-period ground motions, including the ramp-
function-like displacements with the permanent offsets, and the near-field directivity pulsesin the
velocities. On the other hand, for the simulation at high frequencies (0.5 to 10 Hz), the Kamae-
Irikura-Boore method (Kamae, et al, 1998) is used. The results reproduced well the observed
accelerations including the directivity effects. Accordingly, the simulated Fourier spectra agree
well with those observed at broadband frequencies (0 to 10 Hz). The source parameters of an M8
earthquake in a subduction zone can be easily applied to strong motion predictions in other areas
using appropriate Green's functions.

INTRODUCTION

Since the 1994 Northridge and 1995 Hyogoken-Nanbu (Kobe) earthquakes, it is becoming possible to ssimulate
realistic near-field strong motions for M7 earthquakes (e.g., Somerville et al., 1999). However, we still do not
have a sound physical model for predicting near-field strong motions at broadband frequencies for M8
earthquakes. This is primarily because we lack good quality strong motion records near earthquakes. On the
other hand, it is urgent to predict realistic near-field strong motions for M8 earthquakes in subduction zones,
such as, the hypothetical Tokai earthquake, Japan, for disaster prevention.

The purpose of this study is to construct a physical model for predicting near-field strong motions at broadband
frequencies for M8 earthquakes. For this, we use a hybrid method: the modified k-square model (Hisada, 1999)
at frequencies lower than 1 Hz, and Kamae-Irikura-Boore's stochastic method (Kamae, et a., 1998) at
frequencies higher than 1 Hz. We choose the 1985 Michoacan, Mexico, earthquake to construct the source
parameters, because the near-field strong motion recorded during this earthquake is probably the only database
reliable at broadband frequencies (Figure 1). Somerville et a. (1991) and Dan and Sato (1999) carried out
similar strong motion studies using semi-empirical methods.

METHOD

In this study, we combine the two methods: the modified k-square model (Hisada, 1999) at frequencies lower
than 1 Hz, and Kamae-Irikura-Boore's method (Kamae, et al., 1998) at frequencies higher than 0.5 Hz.

(A) The Modified K-Square M odel for Simulating L ong-Period Strong Ground M otions
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The modified k-square model (Hisada, 1999) is a physical omega-square model, which is modified from the k-
sguare model of Bernard et al. (1996) to be more physically appropriate. This model uses a Kostrov-type dslip
velocity and assumes the k-squared (wavenumber-squared) distributions for the slip and the incoherent rupture
time on afault plane. The displacement in the frequency domain is expressed as follows,
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where L and W are the fault length and width, p is the rigidity, D is the dlip, & and n; are the slip and fault
normal vectors, U" is Green's function, and t, is the rupture time. For the slip distribution, we use those
obtained by source inversion studies.

Regarding the slip velocity function, we use the combination of 6 equilateral triangles (Hisada, 1999) as shown
in Figure 2. The dip velocity used in this study has a decay of the inverse of the square root of time (i.e,
Kostrov-type: Kostrov, 1964). The minimum duration of the first triangle is 0.1 second, which introduces fmax
of 10 Hz as shown in the spectrum in Figure 2.

The rupture time t, in equation (1) consists of the coherent rupture time (r/Vr) and the incoherent rupture time At,
(Figure 3; Hisada, 1999). The coherent rupture time is calculated using the average rupture velocity (Vr), which
generates the long-period ground motion. On the other hand, the incoherent rupture time At, generates medium-
to high-frequency waves. In order for equation (1) to represent the omega-square model, the spatial wavenumber
spectrum of At, has to fall off as the inverse of the wavenumber squared (k-squared: Hisada, 1999). We use the
following function as the incoherent rupture time,
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where the phases 6,,,, and 6,, are randomly generated. The lower modes, especialy, the first mode (n=m=1) of At,
is probably strongly related to the spatial dlip variation rather than random distribution. The numerical results for
source dynamic by Day (1982) showed that spatial variations of peak dip velocity are strongly coupled to spatial
variations of rupture velocity. Since we use the same K ostrov-type slip velocity on the whole fault plane, the dlip
variations could be directly coupled to those of the rupture velocity. Thus, we calculated At, of the fundamental
mode by assuming that the local rupture velocity is proportional to the local dlip. The incoherent rupture time
used in this study is shown in the bottom of Figure 3, where we used At=6 (sec) in equation (2).

(B) Kamae-Irikura-Boore' s Method for Simulating Short-Period Strong Ground M otions

To simulate the strong motion at frequencies higher than 1 Hz, we use Kamae-Irikura-Boore's method (Kamae et
al., 1998). In this method, we distribute Boore's stochastic point sources (Boore, 1983) on sub-faults in a manner
that the total Fourier spectrum follows the omega-square model (Irikura, 1986, Aki, 1972).

BROADBAND STRONG MOTION SIMUTATIONSFOR THE 1985 MICHOACAN EARTHQUAKE

We apply the hybrid method mentioned above to the near strong motions recorded during the 1985 Michoacan
earthquake. Figure 1 shows the locations of the fault and the observation stations, CAL (Caleta de Campos), VIL
(LaVillita), UNI (La Union), and ZIH (Zihuatanegjo). We compute the strong motions at the 4 stations using the
modified k-square model at frequencies from 0 to 1 Hz, and those using the Kamae-Irikura-Boore method from
0.5 to 10 Hz. Then, we superpose them using the highcut filter for the former (tapering from 0.5 to 1 Hz) and the
lowcut filter for the latter (tapering from 1 to 0.5 Hz).

Table 1 shows the structure model used by Somerville et al. (1991). Regarding the k-squared model, since we
needed to compute about 18,000 Green's functions at each station to express a continuous wavefront, we used
the Green's function of the full-space with material properties shown in the bottom of Table 1. Then we
multiplied them by the amplification factor using the top two layers. When we compared those results with the
results using the complete Green's function of the layered half-space (Hisada, 1995), we found that the waves
coming from far sources were overestimated up to about 20%. Therefore, we corrected the amplitudes of the
full-space Green functions on the basis of the incident angles. We confirmed that the corrected Green's functions
agree well with the complete Green’s functions.
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Table 2 and 3 show the static source parameters. Those are based on Mendoza and Hartzell (1989), and
Somerville et al. (1991). Table 4 shows the dynamic source parameters used for the modified k-square model.
We use the rupture velocity of 2.8 km/sec to calculate the coherent rupture time. As mentioned above, we
compute the fundamental mode of the incoherent rupture time (At;) by assuming that the local rupture velocity
on each sub-fault is proportional to the static slip. In our smulations, the max and min local rupture velocities
are 3.5 and 1.0 knVs, respectively. For the second and higher modes for At,, we used equation (2) and At=6
second. Figure 3 shows the incoherent rupture time. Regarding the dlip velocity function, we use afac=+/2 (the
ratio between the areas of subsequent triangles, see Hisada, 1999, and Figure 2). This value makes the decay of
the dip velocity to be the inverse of root square of time (i.e., the Kostrov-type function). As shown in Figure 2
and Table 2, we used the fmax=10 Hz and dlip duration=3.2 second.

Table 5 shows the source parameters for the Kamae-Irikura-Boore method. For details of those parameters, see
Boore (1983) and Kamae et al. (1998).

Figures 4 to 6 show the simulated and observed accelerations, velocities, and displacements at the 4 stations. The
accelerations are mainly composed of the results by Kamae-Irikura-Boore's method. The directivity effects are
well-reproduced; the accelerations near the epicenter show relatively longer duration (CAL and UNI), and those
at the forward directivity sites show short duration (UNI and ZIH). Regarding the displacements, the ramp-
function-like permanent offsets are also well-represented by the simulations. Accordingly, the corresponding
long-period velocity pulses are also reproduced well. These waves are mainly modeled by the slip distribution
and the coherent rupture time. On the other hand, the ripples in the velocities are generated mainly by the
incoherent rupture time; drastic changes in the rupture front create a series of the near-source long-period pulses.
Those features of the observation records are also reproduced well.

Finally, Figure 7 shows the simulated and observed Fourier amplitude spectra. The simulated spectra agree well
with those of the observations at broad frequencies.

CONCLUSIONS

We successfully simulated the near-field strong motions during the 1985 Michoacan earthquake at broadband
frequencies. For the simulation at frequencies lower than 1 Hz, we adopted the modified k-square model using
the k-squared dlip distribution by Mendoza and Hartzell (1989) and the k-squared incoherent rupture time. For
modeling the dlip velocity, we used the Kostrov-type function with fmax of 10 Hz. The simulated results
reproduced well the observed long-period ground motions including the ramp-function-like permanent offsets in
the displacements (Figure 6) and the near-field directivity pulses in the velocities (Figure 5). On the other hand,
for the simulation at frequencies higher than 1 Hz, we used Kamae-Irikura-Boore method. The results
reproduced well the observed accelerations including the directivity effects (Figure 4). Accordingly, the
simulated Fourier spectra agree with those observed at broadband frequencies (Figure 7). These source
parameters can be easily applied to strong motion predictions in the area near a M8 earthquake in a subduction
zone.
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Table 1: Thelayered structure model for the Michoacan area (after Somerville et al. 1991)

p(glcm3) Vp(km/s) Qp Vs(km/s) Qs Thickness (km)
2.50 4.6 200.0 2.7 100.0 0.4
2.68 5.8 200.0 34 100.0 5.6
2.78 6.4 200.0 3.7 100.0 -

Table 2: The static source parameters (after Mendoza and Hartzell, 1989)
length (km) | hypocenter along strike (km) | hypocenter along dip (km) | deepest edge (km)

175.0 125.0 90.0 45
width (km) | Strike (deg) dip(deg) rake (deg) Seismic Moment (dyne-cm)
140.0 295.0 14.0 70.0 1.48x 10%

Table 3: The Slip Distributions for the 1985 Michoacan Earthquake (after Mendoza and Hartzell,
1989; Somerville et al. 1991). The size of subfaultsis 25 x 20 km2, and the bottom left of the table
correspondsto the northeast of the fault plane (see Figure 1).

1.0 1.6 18 15 14 15 0.5
25 35 15 4.0 5.0 3.0 0.5
3.0 4.0 17 15 3.0 25 0.8
21 25 0.7 1.0 13 15 0.5
0.8 15 1.0 0.7 0.7 1.0 0.5
0.8 2.0 17 11 0.8 0.5 0.8
13 13 13 0.9 0.8 0.7 1.2

Table 4: The dynamic sour ce parameter s for simulating the ground motionsduring
the Michoacan Earthquake using the modified k-squared model (Hisada, 1999)

Coherent Max Min At fmax Slip NandM | Greenfunc.
V, Vr Vr (9 afac (H2) duration ineq.(2) per
(km/s) (km/s) | (km/s) (sec) sub- fault
2.8 35 1.0 6.0 1.414 10.0 3.2 62 19x 19

Table5: The dynamic sour ce parameter sfor simulating the ground motions during the
Michoacan Earthquake using the Kamae-Irikura-Boore's method (Kamae et al., 1998)
Ao (bar) fmax (Hz) Roo PrriTn V. (km/s)
100 10.0 0.63 1/1.414 2.8

4 0763



1918

OLiMA

o e

) T - T T T
\ JALISCOD f
H .I '\.i;lu
[ &
iy MICILDACAN $

T L]

CLE Sy

AL :
L
. I-'CNN
gy B
: EN Suchil )
o] ag 100 \.{"“k_
e 7 [ SRR B
- "*‘?4# km h‘_l“_"‘-l__
v Acceleragoogh sile
¥ Epleanter
L | 1 L i
104w 103" Lo -a Q=

Figure 1. Geographic map of the Michoacan coast showing the surface projection of the fault (175 km x
140 km with the dip angle of 14 degree) used in this study. The fault planeisdivided into 7 x 7 sub-faults.
The earthquake epicenter and the four strong motion stations are also indicated (after Somerville et al.,

1991).
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Figure 2. Waveforms (Top) and their Fourier Spectra (Bottom) of the dip velocity and displacement used
in this study. The dip velocity consists of 6 equilateral triangles with different durations (0.1, 0.2, 0.4, 0.8,
1.6 and 3.2 seconds), as shown in the dashed and dotted linesin the top figure. Its amplitude decays as the
inverse of the square root of time (i.e., the Kostrov-type function). The minimum duration of the first
triangleis 0.1 second, and it createsthe fmax of 10 Hz as shown in the spectra.
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Figure 3. The coherent rupture time (top) and the incoherent rupture time (bottom) on the fault plane of
the 1985 Michoacan earthquake model, viewing from the southwest edge to the northeast edge).
Equation (2) and the values of Table 4 are used. The wavenumber spectrum amplitude of the
distribution of the incoherent rupturetime (bottom) falls of astheinver se of wavenumber squared.
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Figure 4. Simulated and observed accelerations at the four stations, CAL, VIL, UNI, and ZIH.
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Figure 5. Simulated and observed velocities at the four stations, CAL, VIL, UNI, and ZIH.
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Figure 6. Simulated and observed displacementsat the four stations, CAL, VIL, UNI, and ZIH.
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Figure 7. Simulated and observed Fourier acceleration spectrafrom 0.01to 10 Hz at the four stations
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